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Abstract

This paper explores the computational consequences of simultaneous in-
trinsic and synaptic plasticity in individual model neurons. It proposes
a new intrinsic plasticity mechanism for a continuous activation model
neuron based on low order moments of the neuron’s firing rate distribu-
tion. The goal of the intrinsic plasticity mechanism is to enforce a sparse
distribution of the neuron’s activity level. In conjunction with Hebbian
learning at the neuron’s synapses, the neuron is shown to discover sparse
directions in the input.

1 Introduction

Neurons in the primate visual system exhibit a sparse distribution of firing rates. In partic-
ular, neurons in different visual cortical areas show an approximately exponential distribu-
tion of their firing rates in response to stimulation with natural video sequences [1]. The
brain may do this because the exponential distribution maximizes entropy under the con-
straint of a fixed mean firing rate. The fixed mean firing rate constraint is often considered
to reflect a desired level of metabolic costs. This view is theoretically appealing. However,
it is currently not clear how neurons adjust their firing rate distribution to become sparse.
Several different mechanisms seem to play a role: First, synaptic learning can change a
neuron’s response to a distribution of inputs. Second, intrinsic learning may change con-
ductances in the dendrites and soma to adapt the distribution of firing rates [7]. Third,
non-linear lateral interactions in a network can make a neuron’s responses more sparse [8].
In the extreme case this leads to winner-take-all networks, which form a code where only
a single unit is active for any given stimulus. Such ultra-sparse codes are considered inef-
ficient, however. This paper investigates the interaction of intrinsic and synaptic learning
processes in individual model neurons in the learning of sparse codes.

We consider an individual continuous activation model neuron with a non-linear transfer
function that has adjustable parameters. We are proposing a simple intrinsic learning mech-
anism based on estimates of low-order moments of the activity distribution that allows the
model neuron to adjust the parameters of its non-linear transfer function to obtain an ap-
proximately exponential distribution of its activity. We then show that if combined with a
standard Hebbian learning rule employing multiplicative weight normalization, this leads
to the extraction of sparse features from the input. This is in sharp contrast to standard
Hebbian learning in linear units with multiplicative weight normalization, which leads to



the extraction of the principal Eigenvector of the input correlation matrix. We demonstrate
the behavior of the combined intrinsic and synaptic learning mechanisms on the classic
bars problem [4], a non-linear independent component analysis problem.

The remainder of this paper is organized as follows. Section 2 introduces our scheme for in-
trinsic plasticity and presents experiments demonstrating the effectiveness of the proposed
mechanism for inducing a sparse firing rate distribution. Section 3 studies the combination
of intrinsic plasticity with Hebbian learning at the synapses and demonstrates how it gives
rise to the discovery of sparse directions in the input. Finally, Sect. 4 discusses our findings
in the context of related work.

2 Intrinsic Plasticity Mechanism

Biological neurons do not only adapt synaptic properties but also change their excitabil-
ity through the modification of voltage gated channels. Such intrinsic plasticity has been
observed across many species and brain areas [9]. Although our understanding of these
processes and their underlying mechanisms remains quite unclear, it has been hypothesized
that this form of plasticity contributes to a neuron’s homeostasis of its mean firing rate level.
Our basic hypothesis is that the goal of intrinsic plasticity is to ensure an approximately ex-
ponential distribution of firing rate levels in individual neurons. To our knowledge, this
idea was first investigated in [7], where a Hodgkin-Huxley style model with a number of
voltage gated conductances was considered. A learning rule was derived that adapts the
properties of voltage gated channels to match the firing rate distribution of the unit to a
desired distribution. In order to facilitate the simulation of potentially large networks we
choose a different, more abstract level of modeling employing a continuous activation unit
with a non-linear transfer function. Our model neuron is described by:

Y =8(X), X=wlu, (1)

where Y is the neuron’s output (firing rate), X is the neuron’s total synaptic current, w
is the neuron’s weight vector representing synaptic strengths, the vector u represents the
pre-synaptic input, and Sy(.) is the neuron’s non-linear transfer function (activation func-
tion), parameterized by a vector of parameters . In this section we will not be concerned
with synaptic mechanism changing the weight vector w, so we will just consider a partic-
ular distribution p(X = z) = p(x) of the net synaptic current and consider the resulting
distribution of firing rates p(Y = y) = p(y). Intrinsic plasticity is modeled as inducing
changes to the non-linear transfer function with the goal of bringing the distribution of
activity levels p(y) close to an exponential distribution.

In general terms, the problem is that of matching a distribution to another. Given a signal
with a certain distribution, find a non-linear transfer function that converts the signal to
one with a desired distribution. In image processing, this is typically called histogram
matching. If there are no restrictions on the non-linearity then a solution can always be
found. The standard example is histogram equalization, where a signal is passed through
its own cumulative density function to give a uniform distribution over the interval [0, 1].
While this approach offers a general solution, it is unclear how individual neurons could
achieve this goal. In particular, it requires that the individual neuron can change its non-
linear transfer function arbitrarily, i.e. it requires infinitely many degrees of freedom.

2.1 Intrinsic Plasticity Based on Low Order Moments of Firing Rate

In contrast to the general scheme outlined above the approach proposed here utilizes a
simple sigmoid non-linearity with only two adjustable parameters a and b:

1

Sap(X) = 1+exp(—(X—=0b)/a)’
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Parameter ¢ > 0 changes the steepness of the sigmoid, while parameter b shifts it
left/right'. Qualitatively similar changes in spike threshold and slope of the activation
function have been observed in cortical neurons. Since the non-linearity has only two de-
grees of freedom it is generally not possible to ascertain an exponential activity distribution
for an arbitrary input distribution. A plausible alternative goal is to just match low order
moments of the activity distribution to those of a specific target distribution. Since our
sigmoid non-linearity has two parameters, we consider the first and second moments.

For a random variable 7" following an exponential distribution with mean p we have:
1
p(T=1t)="exp(~t/u) ; Mp=(T)=p; M;=(T*)=2.%, (3

where (.) denotes the expected value operator. Our intrinsic plasticity rule is formulated as
a set of simple proportional control laws for a and b that drive the first and second moments
(Y) and <Y2> of the output distributions to the values of the corresponding moments of an

exponential distribution M}, and MZ:

a=vy((Y?)—24%) , b=n(Y)-p), @

where v and 7 are learning rates. The mean p of the desired exponential distribution is
a free parameter which may vary across cortical areas. Equations (4) describe a system
of coupled integro-differential equations where the integration is implicit in the expected
value operations. Note that both (Y) and <Y2> depend on the sigmoid parameters a and
b. From (4) it is obvious that there is a stationary point of these dynamics if the first and
second moment of Y equal the desired values of 1 and 212, respectively.

The first and second moments of ¥ need to be estimated online. In our model, we calculate
estimates My and M2 of (Y) and (Y'?) according to:

My =Ny — M), M2 =\y>- M), (5)

where ) is a small learning rate.

2.2 Experiments with Intrinsic Plasticity Mechanism

We tested the proposed intrinsic plasticity mechanism for a number of distributions of
the synaptic current X (Fig. 1). Consider the case where this current follows a Gaussian
distribution with zero mean and unit variance: X ~ N(0,1). Under this assumption we can
calculate the moments (Y") and <Y2> (although only numerically) for any particular values
of a and b. Panel a in Fig. 1 shows a phase diagram of this system. Its flow field is sketched
and two sample trajectories converging to a stationary point are given. The stationary point
is at the intersection of the nullclines where (Y') = p and <Y2> = 2u2. Tts coordinates
are aoo ~ 0.90, boo = 2.38. Panel b compares the theoretically optimal transfer function
(dotted), which would lead to an exactly exponential distribution of Y, with the learned
sigmoidal transfer function (solid). The learned transfer function gives a very good fit.
The resulting distribution of Y is in fact very close to the desired exponential distribution.
For the general case of a Gaussian input distribution with mean p and standard deviation
0a, the sigmoid parameters will converge to a — a0 and b — boo0g + pe under the
intrinsic plasticity rule. If the input to the unit can be assumed to be Gaussian, this relation
can be used to calculate the desired parameters of the sigmoid non-linearity directly.

"Note that while we view adjusting @ and b as changing the shape of the sigmoid non-linearity,
an equivalent view is that a and b are used to linearly rescale the signal X before it is passed through
a “standard” logistic function. In general, however, intrinsic plasticity may give rise to non-linear
changes that cannot be captured by such a linear re-scaling of all weights.
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Figure 1: Dynamics of intrinsic plasticity mechanism for various input distributions. a,b:
Gaussian input distribution. Panel a shows the phase plane diagram. Arrows indicate
the flow field of the system. Dotted lines indicate approximate locations of the nullclines
(found numerically).Two example trajectories are exhibited which converge to the station-
ary point (marked with a circle). Panel b shows the optimal (dotted) and learned trans-
fer function (solid). The Gaussian input distribution (dashed, not drawn to scale) is also
shown. ¢,d: same as b but for uniform and exponential input distribution. Parameters were
p=01A=5x10"4n=2x10"3,y=10"3.

Panels c and d show the result of intrinsic plasticity for two other input distributions. In
the case of a uniform input distribution in the interval [0, 1] (panel c) the optimal transfer
function becomes infinitely steep for x — 1. For an exponentially distributed input (panel
d), the ideal transfer function would simply be the identity function. In both cases the
intrinsic plasticity mechanism adjusts the sigmoid non-linearity in a sensible fashion and
the output distribution is a fair approximation of the desired exponential distribution.

2.3 Discussion of the Intrinsic Plasticity Mechanism

The proposed mechanism for intrinsic plasticity is effective in driving a neuron to exhibit
an approximately exponential distribution of firing rates as observed in biological neurons
in the visual system. The general idea is not restricted to the use of a sigmoid non-linearity.
The same adaptation mechanism can also be used in conjunction with, say, an adjustable
threshold-linear activation function. An interesting alternative to the proposed mechanism
can be derived by directly minimizing the KL divergence between the output distribution
and the desired exponential distribution through stochastic gradient descent. The resulting
learning rule, which is closely related to a rule for adapting a sigmoid nonlinearity to max-



imize the output entropy derived by Bell and Sejnowski[2], will be discussed elsewhere. It
leads to very similar results to the ones presented here.

A biological implementation of the proposed mechanism is plausible. All that is needed are
estimates of the first and second moment of the firing rate distribution. A specific, testable
prediction of the simple model is that changes to the distribution of a neuron’s firing rate
levels that keep the average firing rate of the neuron unchanged but alter the second moment
of the firing rate distribution should lead to measurable changes in the neuron’s excitability.

3 Combination of Intrinsic and Synaptic Plasticity

In this Section we want to study the effects of simultaneous intrinsic and synaptic learn-
ing for an individual model neuron. Synaptic learning is typically modeled with Hebbian
learning rules, of which a large number are being used in the literature. In principle, any
Hebbian learning rule can be combined with our scheme for intrinsic plasticity. Due to
space limitations, we only consider the simplest of all Hebbian learning rules:

Aw = auY (u) = auSg(w ) , (6)

where the notation is identical to that of Sec. 2 and « is a learning rate. This learning rule
is unstable and needs to be accompanied by a scheme limiting weight growth. We simply
adopt a multiplicative normalization scheme that after each update re-scales the weight
vector to unit length: w — w/|| w ||

3.1 Analysis for the Limiting Case of Fast Intrinsic Plasticity

Under a few assumptions, an interesting intuition about the simultaneous intrinsic and Heb-
bian learning can be gained. Consider the limit of intrinsic plasticity being much faster than
Hebbian plasticity. This may not be very plausible biologically, but it allows for an inter-
esting analysis. In this case we may assume that the non-linearity has adapted to give an
approximately exponential distribution of the firing rate Y before w can change much.
Thus, from (6), Aw can be seen as a weighted sum of the inputs u, with the activities
Y acting as weights that follow an approximately exponential distribution. Since similar
inputs u will produce similar outputs Y, the expected value of the weight update (Aw)
will be dominated by a small set of inputs that produce the highest output activities. The
remainder of the inputs will “pull” the weight vector back to the average input (u). Due
to the multiplicative weight normalization, the stationary states of the weight vector are
reached if Aw is parallel to w, i.e., if (Aw) = kw for some constant .

A simple example shall illustrate the effect of intrinsic plasticity on Hebbian learning in
more detail. Consider the case where there are only two clusters of inputs at the locations
c; and cy. Let us also assume that both clusters account for exactly half of the inputs. If
the weight vector is slightly closer to one of the two clusters, inputs from this cluster will
activate the unit more strongly and will exert a stronger “pull” on the weight vector. Let
m = plIn(2) denote the median of the exponential firing rate distribution with mean p.
Then inputs from the closer cluster, say c1, will be responsible for all activities above m
while the inputs from the other cluster will be responsible for all activities below m. Hence,
the expected value of the weight update (Aw) will be given by:

(Aw) =~ acl/ %exp(—y/u)derOzCz/o %exp(—y/u)dy (7
= 1 +m2e+(1-12)ec) . )

Taking the multiplicative weight normalization into account, we see that the weight vector



x10° 0

8 10
S
8
g 6f =
5 5"
] c
= )
o 4 =
= ©
c = -2
2 10
2 2
€
<}
© -3
0 10 0

0 200 400 600 800 1000

2. 4 6 8
cluster number i contribution to weight vector fi %107

10

Figure 2: Left: relative contributions to the weight vector f; for N = 1000 input clusters
(sorted). Right: the distribution of the f; is approximately exponential.

will converge to either of the following two stationary states:
1+1In2 1FIn2
w=_dEh2e+{dFn2e; ©)
| (1+£In2)cy + (1 Fln2)cs ||
The weight vector moves close to one of the two clusters but does not fully commit to it.

For the general case of IV input clusters, only a few clusters will strongly contribute to the
final weight vector. Generalizing the result from above, it is not difficult to derive that the
weight vector w will be proportional to a weighted sum of the cluster centers:

N
W o< Y fici ; with f; = 1+ log(N) —ilog(i) + (i — 1)log(i — 1), (10)
i=1
where we define 0log(0) = 0. Here, f; denotes the relative contribution of the i-th closest
input cluster to the final weight vector. There can be at most N! resulting weight vectors
owing to the number of possible assignments of the f; to the clusters. Note that the final
weight vector does not depend on the desired mean activity level p. Fig. 2 plots (10)
for N = 1000 (left) and shows that the resulting distribution of the f; is approximately
exponential (right).

We can see why such a weight vector may correspond to a sparse direction in the input space
as follows: consider the case where the input cluster centers are random vectors of unit
length in a high-dimensional space. It is a property of high-dimensional spaces that random
vectors are approximately orthogonal, so that cich ~ 0;;, where 0;; is the Kronecker delta.
If we consider the projection of an input from an arbitrary cluster, say c;, onto the weight
vector, we see that w’c; o (3, ficl') ¢; &~ f;. The distribution of X = w”u follows
the distribution of the f;, which is approximately exponential. Thus, the projection of all
inputs onto the weight vector has an approximately exponential distribution. Note that this
behavior is markedly different from Hebbian learning in a linear unit which leads to the
extraction of the principal eigenvector of the input correlation matrix.

It is interesting to note that in this situation the optimal transfer function .S* that will make
the unit’s activity Y have an exponential distribution of a desired mean p is simply a multi-
plication with a constant &, i.e. S*(X) = kX. Thus, depending on the initial weight vector
and the resulting distribution of X, the neuron’s activation function may transiently adapt
to enforce an approximately exponential firing rate distribution, but the simultaneous Heb-
bian learning drives it back to a linear form. In the end, a simple linear activation function
may result from this interplay of intrinsic and synaptic plasticity. In fact, the observation
of approximately linear activation functions in cortical neurons is not uncommon.
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Figure 3: Left: example stimuli from the “bars” problem for a 10 by 10 pixel retina. Right:
the activity record shows the unit’s response to every 10th input pattern. Below, we show
the learned weight vector after presentation of 10,000, 20,000, and 30,000 training patterns.

3.2 Application to the “Bars” Problem

The “bars” problem is a standard problem for unsupervised learning architectures [4]. It
is a non-linear ICA problem for which traditional ICA approaches have been shown to
fail [5]. The input domain consists of an N-by-N retina. On this retina, all horizontal
and vertical bars (2N in total) can be displayed. The presence or absence of each bar is
determined independently, with every bar occurring with the same probability p (in our
case p = 1/N). If a horizontal and a vertical bar overlap, the pixel at the intersection point
will be just as bright as any other pixels on the bars, rather than twice as bright. This makes
the problem a non-linear ICA problem. Example stimuli from the bars dataset are shown
in Fig. 3 (left). Note that we normalize input vectors to unit length. The goal of learning in
the bars problem is to find the independent sources of the images, i.e., the individual bars.
Thus, the neural learning system should develop filters that represent the individual bars.

We have trained an individual sigmoidal model neuron on the bars input domain. The
theoretical analysis above assumed that intrinsic plasticity is much faster than synaptic
plasticity. Here, we set the intrinsic plasticity to be slower than the synaptic plasticity,
which is more plausible biologically, to see if this may still allow the discovery of sparse
directions in the input. As illustrated in Fig. 3 (right) the unit’s weight vector aligns with
one of the individual bars as soon as the intrinsic plasticity has pushed the model neuron
into a regime where its responses are sparse: the unit has discovered one of the independent
sources of the input domain. This result is robust if the desired mean activity p of the unit
is changed over a wide range. If p is reduced from its default value (1/2N = 0.05)
over several orders of magnitude (we tried down to 10~5) the result remains unchanged.
However, if p is increased above about 0.15, the unit will fail to represent an individual
bar but will learn a mixture of two or more bars, with different bars being represented with
different strengths. Thus, in this example — in contrast to the theoretical result above —
the desired mean activity p does influence the weight vector that is being learned. The
reason for this is that the intrinsic plasticity only imperfectly adjusts the output distribution
to the desired exponential shape. As can be seen in Fig. 3 the output has a multimodal
structure. For low p, only the highest mode, which corresponds to a specific single bar
presented in isolation, contributes strongly to the weight vector.

4 Discussion

Biological neurons are highly adaptive computation devices. While the plasticity of a neu-
ron’s synapses has always been a core topic of neural computation research, there has been
little work investigating the computational properties of intrinsic plasticity mechanisms and



the relation between intrinsic and synaptic learning. This paper has investigated the poten-
tial role of intrinsic learning mechanisms operating at the soma when used in conjunction
with Hebbian learning at the synapses. To this end, we have proposed a new intrinsic plas-
ticity mechanism that adjusts the parameters of a sigmoid nonlinearity to move the neuron’s
firing rate distribution to a sparse regime. The learning mechanism is effective in produc-
ing approximately exponential firing rate distributions as observed in neurons in the visual
system of cats and primates. Studying simultaneous intrinsic and synaptic learning, we
found a synergistic relation between the two. We demonstrated how the two mechanisms
may cooperate to discover sparse directions in the input. When applied to the classic “bars”
problem, a single unit was shown to discover one of the independent sources as soon as the
intrinsic plasticity moved the unit’s activity distribution into a sparse regime. Thus, this re-
search is related to other work in the area of Hebbian projection pursuit and Hebbian ICA,
e.g., [3, 6]. In such approaches, the “standard” Hebbian weight update rule is modified to
allow the discovery of non-gaussian directions in the input. We have shown that the com-
bination of intrinsic plasticity with the standard Hebbian learning rule can be sufficient for
the discovery of sparse directions in the input. Future work will analyze the combination
of intrinsic plasticity with other Hebbian learning rules. Further, we would like to consider
networks of such units and the formation of map-like representations. The nonlinear nature
of the transfer function may facilitate the construction of hierarchical networks for unsu-
pervised learning. It will also be interesting to study the effects of intrinsic plasticity in the
context of recurrent networks, where it may contribute to keeping the network in a certain
desired dynamic regime.
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