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Abstract
We propose a family of kernels based on the Binet-Cauchy theorem and its ex-
tension to Fredholm operators. This includes as special cases all currently known
kernels derived from the behavioral framework, diffusion processes, marginalized
kernels, kernels on graphs, and the kernels on sets arising from the subspace angle
approach. Many of these kernels can be seen as the extrema of a new continuum
of kernel functions, which leads to numerous new special cases. As an application,
we apply the new class of kernels to the problem of clustering of video sequences
with encouraging results.

1 Introduction

Recent years have see a combinatorial explosion of results on kernels for structured and
semi-structured data, including trees, strings, graphs, transducers and dynamical systems
[6, 8, 15, 13]. The fact that these kernels are very specific to the type of discrete data under
consideration is a major cause of confusion to the practitioner. What is required is a) an
unifiedview of the field and b) arecipeto design new kernels easily.
The present paper takes a step in this direction by unifying these diverse kernels by means
of the Binet-Cauchy theorem. Our point of departure is the work of Wolf and Shashua [17],
or more specifically, their proof thatdetA⊤B is a kernel on matricesA,B ∈ R

m×n. We
extend the results of [17] in the following three ways:
1. There exists an operator-valued equivalent of the Binet-Cauchy theorem.
2. Wolf and Shashua only exploit the Binet-Cauchy theorem for one particular choice of

parameters. It turns out that the continuum of these values corresponds to a large class
of kernels some of which are well known and others which are novel.

3. The Binet-Cauchy theorem can be extended to semirings. This points to a close con-
nection with rational kernels [3].

Outline of the paper: Section 2 contains the main result of the present paper: the def-
inition of Binet-Cauchy kernels and their efficient computation. Subsequently, section 3
discusses a number of special cases, which allows us to recover well known kernel func-
tions. Section 4 applies our derivations to the analysis of video sequences, and we conclude
with a discussion of our results.

2 Binet-Cauchy Kernels

In this section we deal with linear mappings fromX = R
n to Y = R

m (typically denoted
by matrices), their coordinate free extensions to Fredholm operators (hereR

n andR
m are

replaced by measurable sets), and their extensions to semirings (here addition and multi-
plication are replaced by an abstract class of symbols(⊕,⊗) with the same distributive
properties).



2.1 The General Composition Formula

We begin by defining compound matrices. They arise by picking subsets of entries of a
matrix and computing their determinants.

Definition 1 (Compound Matrix) LetA ∈ R
m×n, let q ≤ min(m,n) and letIn

q = {i =
(i1, i2, . . . , iq) : 1 ≤ i1 < . . . < iq ≤ n, ii ∈ N} and likewiseIm

q . Then the compound
matrix of orderq is defined as

[Cq(A)]i,j := det(A(ik, jl))
q
k,l=1 where i ∈ In

q and j ∈ Im
q . (1)

Herei, j are assumed to be arranged in lexicographical order.

Theorem 2 (Binet-Cauchy) LetA ∈ R
l×m and,B ∈ R

l×n. For q ≤ min(m,n, l) we
haveCq(A

⊤B) = Cq(A)⊤Cq(B).

Whenq = m = n = l we haveCq(A) = det(A) and the Binet-Cauchy theorem becomes
the well known identitydet(A⊤B) = det(A) det(B). On the other hand whenq = 1 we
haveC1(A) = A, so Theorem 2 reduces to a tautology.

Theorem 3 (Binet-Cauchy for Semirings) When the common semiring(R,+, ·, 0, 1) is
replaced by an abstract semiring(K,⊕,⊗, 0̄, 1̄) the equalityCq(A

⊤B) = Cq(A)⊤Cq(B)
still holds. Here all operations occur on the monoidK, addition and multiplication are
replaced by⊕,⊗, and(0̄, 1̄) take the role of(0, 1).

A second extension of Theorem 2 is to replace matrices by Fredholm operators, as they
can be expressed as integral operators with corresponding kernels. In this case, Theorem 2
becomes a statement about convolutions of integral kernels.

Definition 4 (Fredholm Operator) A Fredholm operator is a bounded linear operator be-
tween two Hilbert spaces with closed range and whose kernel and co-kernel are finite-
dimensional.

Theorem 5 (Kernel Representation of Fredholm Operators)LetA : L2(Y) → L2(X)
and,B : L2(Y) → L2(Z) be Fredholm operators. Then there exists somekA : X×Y → R

such that for allf ∈ L2(X) we have

[Af ](x) =

∫

Y

kA(x, y)f(y)dy. (2)

Moreover, for the compositionA⊤B we havekA⊤B(x, z) =
∫

Y
kA⊤(x, y)kB(y, z)dy.

Here the convolution of kernelskA andkB plays the same role as the matrix multiplica-
tion. To extend the Binet-Cauchy theorem we need to introduce the analog of compound
matrices:

Definition 6 (Compound Kernel and Operator) Denote byX,Y ordered sets and letk :
X×Y → R. DefineIX

q = {x ∈ X
q : x1 ≤ . . . ≤ xq} and likewiseIY

q . Then the compound
kernel of orderq is defined as

k[q](x,y) := det(k(xk, yl))
q
k,l=1 wherex ∈ IX

q and y ∈ IY
q . (3)

If k is the integral kernel of an operatorA we defineCq(A) to be the integral operator
corresponding tok[q].

Theorem 7 (General Composition Formula [11]) LetX,Y,Z be ordered sets and letA :
L2(Y) → L2(X),B : L2(Y) → L2(Z) be Fredholm operators. Then forq ∈ N we have

Cq(A
⊤B) = Cq(A)⊤Cq(B). (4)

To recover Theorem 2 from Theorem 7 setX = [1..m], Y = [1..n] andZ = [1..l].



2.2 Kernels

The key idea in turning the Binet-Cauchy theorem and its various incarnations into a kernel
is to exploit the fact thattrA⊤B anddetA⊤B are kernels on operatorsA,B. We extend
this by replacingA⊤B with some functionsψ(A)⊤ψ(B) involving compound operators.

Theorem 8 (Trace and Determinant Kernel) LetA,B : L2(X) → L2(Y) be Fredholm
operators and letS : L2(Y) → L2(Y), T : L2(X) → L2(X) be positive trace-class opera-
tors. Then the following two kernels are well defined and they satisfy Mercer’s condition:

k(A,B) = tr
[

SA⊤TB
]

(5)

k(A,B) = det
[

SA⊤TB
]

. (6)

Note that determinants are not defined in general for infinite dimensional operators, hence
our restriction to Fredholm operatorsA,B in (6).
Proof Observe thatS andT are positive and compact. Hence they admit a decomposition
into S = VSV

⊤

S andT = V ⊤

T VT . By virtue of the commutativity of the trace we have

thatk(A,B) = tr
(

[VTAVS ]
⊤

[VTBVS ]
)

. Analogously, using the Binet-Cauchy theorem,

we can decompose the determinant. The remaining termsVTAVS andVTBVS are again
Fredholm operators for which determinants are well defined.

Next we use special choices ofA,B, S, T involving compound operators directly to state
the main theorem of our paper.

Theorem 9 (Binet-Cauchy Kernel) Under the assumptions of Theorem 8 it follows that
for all q ∈ N the kernelsk(A,B) = trCq

[

SA⊤TB
]

andk(A,B) = detCq

[

SA⊤TB
]

satisfy Mercer’s condition.

Proof We exploit the factorizationS = VSV
⊤

S , T = V ⊤

T VT and apply Theorem 7. This
yieldsCq(SA

⊤TB) = Cq(VTAVS)⊤Cq(VTBVS), which proves the theorem.

Finally, we define a kernel based on the Fredholm determinant itself. It is essentially a
weighted combination of Binet-Cauchy kernels. Fredholm determinants are defined as
follows [11]:

D(A,µ) :=

∞
∑

q=1

µq

q!
trCq(A). (7)

This series converges for allµ ∈ C and it is an entire function ofµ. It suggests a kernel
involving weighted combinations of the kernels of Theorem 9. We have the following:

Corollary 10 (Fredholm Kernel) LetA,B, S, T as in Theorem 9 and letµ > 0. Then the
following kernel satisfies Mercer’s condition:

k(A,B) := D(A⊤B,µ) whereµ > 0. (8)

D(A⊤B,µ) is a weighted combination of the kernels discussed above. The exponential
down-weighting via 1

q! ensures that the series converges even in the case of exponential
growth of the values of the compound kernel.

2.3 Efficient Computation

At first glance, computing the kernels of Theorem 9 and Corollary 10 presents a formidable
computational task even in the finite dimensional case. IfA,B ∈ R

m×n, the matrix
Cq(A

⊤B) has
(

n
q

)

rows and columns and each of the entries requires the computation of
a determinant of aq-dimensional matrix. A brute-force approach would involveO(q3nq)
operations (assuming2q ≤ n). Clearly we need more efficient techniques.
When computing determinants, we can take recourse to Franke’s Theorem [7] which states
that

detCq(A) = (detA)(
n−1

q−1). (9)



and consequentlyk(A,B) = detCq[SA
⊤TB] = (det[SA⊤TB])(

n−1

q−1).1 This indicates
that the determinant kernel may be of limited use, due to the typically quite high power in
the exponent. Kernels building ontrCq are not plagued by this problem and we give an
efficient recursion below. It follows from the ANOVA kernel recursion of [1]:

Lemma 11 Denote byA ∈ C
m×m a square matrix and letλ1, . . . , λm be its eigenvalues.

ThentrCq(A) can be computed by the following recursion:

trCq(A) =
1

q

q
∑

j=1

(−1)j+1C̄q−j(A)C̄j(A) whereC̄q(A) =
n

∑

j=1

λ
q
j . (10)

Proof We begin by writingA in its Jordan normal form asA = PDP−1 whereD is a
block diagonal, upper triangular matrix. Furthermore, the diagonal elements ofD consist
of the eigenvalues ofA. Repeated application of the Binet-Cauchy Theorem yields

trCq(A) = trCq(P )Cq(D)Cq(P
−1) = trCq(D)Cq(P

−1)Cq(P ) = trCq(D) (11)

For a triangular matrix the determinant is the product of its diagonal entries. Since all
the square submatrices ofD are also upper triangular, to constructtr(Cq(D)) we need to
sum over all products of exactlyq eigenvalues. This is analog to the requirement of the
ANOVA kernel of [1]. In its simplified version it can be written as (10), which completes
the proof.

We can now compute the Jordan normal form ofSA⊤TB in O(n3) time and apply
Lemma 11 directly to it to compute the kernel value.
Finally, in the case of Fredholm determinants, we can use the recursion directly, because
for n-dimensional matrices the sum terminates aftern terms. This is no more expensive
than computingtrCq directly. Note that in the general nonsymmetric case (i.e.A 6= A⊤)
no such efficient recursions are known.

3 Special Cases

We now focus our attention on various special cases to show how they fit into the general
framework which we developed in the previous section. For this to succeed, we will map
various systems such as graphs, dynamical systems, or video sequences into Fredholm
operators. A suitable choice of this mapping and of the operatorsS, T of Theorem 9 will
allow us to recover many well-known kernels as special cases.

3.1 Dynamical Systems

We begin by describing a partially observable discrete time LTI (Linear Time Invariant)
model commonly used in control theory. Its time-evolution equations are given by

yt = Pxt + wt wherewt ∼ N(0, R) (12a)

xt = Qxt−1 + vt wherevt ∼ N(0, S). (12b)

Hereyt ∈ R
m is observed,xt ∈ R

n is thehiddenor latentvariable, andP ∈ R
m×n, Q ∈

R
n×n, R ∈ R

m×m and,S ∈ R
n×n, moreoverR,S � 0. Typicallym≫ n. similar model

exists forcontinuousLTI. Further details on it can be found in [14].
Following the behavioral framework of [16] we associate dynamical systems,X :=
(P,Q,R, S, x0), with their trajectories, that is, the set ofyt with t ∈ N for discrete time
systems (andt ∈ [0,∞) for the continuous-time case). These trajectories can be interpreted

1Eq. (9) can be seen as follows: the compound matrix of an orthogonal matrix is orthogonal and
consequently its determinant is unity. Subsequently use an SVD factorization of the argument of the
compound operator to compute the determinant of the compound matrix of a diagonal matrix.



as linear operators mapping fromRm (the space of observationsy) into the time domain
(N or [0,∞)) and vice versa. The diagram below depicts this mapping:

X // Traj(X) // Cq(Traj(X))

Finally,Cq(Traj(X)) is weighted in a suitable fashion by operatorsS andT and the trace
is evaluated. This yields an element from the family of Binet-Cauchy kernels.
In the following we discuss several kernels and we show that they differ essentially
in how the mapping into a dynamical system occurs (discrete-time or continuous time,
fully observed or partial observations), whether any other preprocessing is carried out on
Cq(Traj(X)) (such as QR decomposition in the case of the kernel proposed by [10] and
rediscovered by [17]), or which weightingS, T is chosen.

3.2 Dynamical Systems Kernels

We begin with kernels on dynamical systems (12) as proposed in [14]. SetS = 1, q = 1
andT to be the diagonal operator with entriese−λt. In this case the Binet-Cauchy kernel
between systemsX andX ′ becomes

trCq(S Traj(X) T Traj(X ′)⊤) =

∞
∑

i=1

e−λty⊤t y
′

t. (13)

Sinceyt, y
′
t are random variables, we also need to take expectations overwt, vt, w

′
t, v

′
t.

Some tedious yet straightforward algebra [14] allows us to compute (13) as follows:

k(X,X ′) = x⊤0 M1x
′

0 +
1

eλ − 1
tr [SM2 +R] , (14)

whereM1,M2 satisfy the Sylvester equations:

M1 = e−λQ⊤P⊤P ′Q′ + e−λQ⊤M1Q
′ andM2 = P⊤P ′ + e−λQ⊤M2Q

′. (15)

Such kernels can be computed inO(n3) time [5]. Analogous expressions for continuous-
time systems exist [14]. In Section 4 we will use this kernel to compute similarities between
video sequences, after having encoded the latter as a dynamical system. This will allow us
to compare sequences of different length, as they are all mapped to dynamical systems in
the first place.

3.3 Martin Kernel

A characteristic property of (14) is that it takes initial conditions of the dynamical system
into account. If this is not desired, one may choose to pick only thesubspacespanned by
the trajectoryyt. This is what was proposed in [10].2

More specifically, setS = T = 1, consider the trajectory upto only a finite number of time
steps, say up ton, and letq = n. Furthermore letTraj(X) = QXRX denote the QR-
decomposition ofTraj(X), whereQX is an orthogonal matrix andRX is upper triangular.
Then it can be easily verified the kernel proposed by [10] can be written as

k(X,X ′) = trCq(SQXTQ
⊤

X′) = det(QXQ
⊤

X′). (16)

This similarity measure has been used by Soatto, Doretto, and coworkers [4] for the anal-
ysis and computation of similarity in video sequences. Subsequently Wolf and Shashua
[17] modified (16) to allow for kernels: to deal with determinants on a possibly infinite-
dimensional feature space they simply project the trajectories on a reduced set of points in
feature space.3 This is what [17] refer to as a kernel on sets.

2Martin [10] suggested the use of Cepstrum coefficients of a dynamical system to define a Eu-
clidean metric. Later De Cock and Moor [2] showed that this distance is, indeed, given by the
computation of subspace angles, which can be achieved by computing the QR-decomposition.

3To be precise, [17] are unaware of the work of [10] or of [2] and they rediscover the notion of
subspace angles for the purpose of similarity measures.



3.4 Graph Kernels

Yet another class of kernels can be seen to fall into this category: the graph kernels proposed
in [6, 13, 9, 8]. Denote byG(V,E) a graph with verticesV and edgesE. In some cases,
such as in the analysis of molecules, the vertices will be equipped with labelsL. For
recovering these kernels from our framework we setq = 1 and systematically map graph
kernels to dynamical systems.
We denote byxt a probability distribution over the set of vertices at timet. The time-
evolutionxt → xt+1 occurs by performing a random walk on the graphG(V,E). This
yields xt+1 = WD−1xt, whereW is the connectivity matrix of the graph andD is a
diagonal matrix whereDii denotes the outdegree of vertexi. For continuous-time systems
one usesx(t) = exp(−L̃t)x(0), whereL̃ is the normalized graph Laplacian [9].
In the graph kernels of [9, 13] one assumes that the variablesxt are directly observed and
no special mapping is required in order to obtainyt. Various choices ofS andT yield the
following kernels:

• [9] consider a snapshot of the diffusion process att = τ . This amounts to choosing
T = 1 and aS which is zero except for a diagonal entry atτ .

• The inverse Graph-Laplacian kernel proposed in [13] uses a weighted combination of
diffusion process and corresponds toS = W a diagonal weight matrix.

• The model proposed in [6] can be seen as using a partially observable model: rather
than observing the states directly, we only observe the labels emitted at the states. If we
associate this mapping from states to labels with the matrixP of (12), setT = 1 and
let S be the projector on the firstn time instances, we recover the kernels from [6].

So far, we deliberately made no distinction between kernelsongraphs and kernelsbetween
graphs. This is for good reason: the trajectories depend on bothinitial conditionsand the
dynamical systemitself. Consequently, whenever we want to consider kernels between ini-
tial conditions, we choose the same dynamical system in both cases. Conversely, whenever
we want to consider kernels between dynamical systems, we average over initial conditions.
This is what allows us to cover all the aforementioned kernels in one framework.

3.5 Extensions

Obviously the aforementioned kernels are just specific instances of what is possible by
using kernels of Theorem 9. While it is pretty much impossible to enumerate all combina-
tions, we give a list of suggestions for possible kernels below:

• Use the continuous-time diffusion process and a partially observable model. This would
extend the diffusion kernels of [9] to comparisons between vertices of a labeled graph
(e.g. atoms in a molecule).

• Use diffusion processes to define similarity measures between graphs.
• Compute the determinant of the trajectory associated with ann-step random walk on a

graph, that is useCq with q = n instead ofC1. This gives a kernel analogous to the
one proposed by Wolf and Shashua [17], however without the whitening incurred by
the QR factorization.

• Take Fredholm determinants of the above mentioned trajectories.
• Use a nonlinear version of the dynamical system as described in [14].

4 Experiments

To test the utility of our kernels we applied it to the task of clustering short video clips.
We randomly sampled 480 short clips from the movieKill Bill and model them as linear
ARMA models (see Section 3.1).
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Figure 1: LLE embeddings of 480 ran-
dom clips from Kill Bill

The sub-optimal procedure outlined in [4] was used
for estimating the model parametersP , Q, R and,
S and the kernels described in Section 3.2 were ap-
plied to these models. Locally Linear Embedding
(LLE) [12] was used to cluster and embed the clips
in two dimensions. The two dimensional embed-
ding obtained by LLE is depicted in Figure 1. We
randomly selected a few data points from Figure 1
and depict the first frame of the corresponding clips
in Figure 2.
Observe the linear cluster (with a projecting arm) in
Figure 1. This corresponds to clips which are tem-
porally close to each other and hence have similar

dynamics. For instance clips in the far right depict a
person rolling in the snow while those in the far left corner depict a sword fight while clips
in the center involve conversations between two characters. A naivé comparison of the in-
tensity values or a dot product of the actual clips would not be able to extract such semantic
information. Even though the camera angle varies with time our kernel is able to success-
fully pick out the underlying dynamics of the scene. These experiments are encouraging
and future work will concentrate on applying this to video sequence querying.

Figure 2: LLE embeddings of a subset of our dataset. A larger version is available from
http://mlg.anu.edu.au/˜vishy/papers/KillBill.png

5 Discussion

In this paper, we introduced a unifying framework for defining kernels on discrete objects
using the Binet-Cauchy theorem on compounds of the Fredholm operators. We demon-
strated that many of the previously known kernels can be explained neatly by our frame-
work. In particular many graph kernels and dynamical system related kernels fall out as
natural special cases. The main advantage of our unifying framework is that it allows ker-
nel engineers to use domain knowledge in a principled way to design kernels for solving
real life problems.
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