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Abstract

Online mechanism design (MD) considers the problem of provid-
ing incentives to implement desired system-wide outcomes in sys-
tems with self-interested agents that arrive and depart dynami-
cally. Agents can choose to misrepresent their arrival and depar-
ture times, in addition to information about their value for different
outcomes. We consider the problem of maximizing the total long-
term value of the system despite the self-interest of agents. The
online MD problem induces a Markov Decision Process (MDP),
which when solved can be used to implement optimal policies in a
truth-revealing Bayesian-Nash equilibrium.

1 Introduction

Mechanism design (MD) is a subfield of economics that seeks to implement par-
ticular outcomes in systems of rational agents [1]. Classically, MD considers static
worlds in which a one-time decision is made and all agents are assumed to be pa-
tient enough to wait for the decision. By contrast, we consider dynamic worlds in
which agents may arrive and depart over time and in which a sequence of decisions
must be made without the benefit of hindsight about the values of agents yet to
arrive. The MD problem for dynamic systems is termed online mechanism design
[2]. Online MD supposes the existence of a center, that can receive messages from
agents and enforce a particular outcome and collect payments.

Sequential decision tasks introduce new subtleties into the MD problem. First,
decisions now have expected value instead of certain value because of uncertainty
about the future. Second, new temporal strategies are available to an agent, such
as waiting to report its presence to try to improve its utility within the mechanism.
Online mechanisms must bring truthful and immediate revelation of an agent’s value
for sequences of decisions into equilibrium.



Without the problem of private information and incentives, the sequential decision
problem in online MD could be formulated and solved as a Markov Decision Process
(MDP). In fact, we show that an optimal policy and MDP-value function can be
used to define an online mechanism in which truthful and immediate revelation of
an agent’s valuation for different sequences of decisions is a Bayes-Nash equilibrium.

Our approach is very general, applying to any MDP in which the goal is to maximize
the total expected sequential value across all agents. To illustrate the flexibility of
this model, we can consider the following illustrative applications:

reusable goods. A renewable resource is available in each time period. Agents
arrive and submit a bid for a particular quantity of resource for each of a
contiguous sequence of periods, and before some deadline.

multi-unit auction. A finite number of identical goods are for sale. Agents submit
bids for a quantity of goods with a deadline, by which time a winner-
determination decision must be made for that agent.

multiagent coordination. A central controller determines and enforces the ac-
tions that will be performed by a dynamically changing team of agents.
Agents are only able to perform actions while present in the system.

Our main contribution is to identify this connection between online MD and MDPs,
and to define a new family of dynamic mechanisms, that we term the online VCG
mechanism. We also clearly identify the role of the ability to stall a decision, as it
relates to the value of an agent, in providing for Bayes-Nash truthful mechanisms.

1.1 Related Work

The problem of online MD is due to Friedman and Parkes [2], who focused on
strategyproof online mechanisms in which immediate and truthful revelation of an
agent’s valuation function is a dominant strategy equilibrium. The authors define
the mechanism that we term the delayed VCG mechanism, identify problems for
which the mechanism is strategyproof, and provide the seeds of our work in Bayes-
Nash truthful mechanisms. Work on online auctions [3] is also related, in that
it considers a system with dynamic agent arrivals and departures. However, the
online auction work considers a much simpler setting (see also [4]), for instance the
allocation of a fixed number of identical goods, and places less emphasis on temporal
strategies or allocative efficiency. Awerbuch et al. [5], provide a general method to
construct online auctions from online optimization algorithms. In contrast to our
methods, their methods consider the special case of single-minded bidders with a
value vi for a particular set of resources ri, and are only temporally strategyproof
in the special-case of online algorithms with a non-decreasing acceptance threshold.

2 Preliminaries

In this section, we introduce a general discrete-time and finite-action formulation
for a multiagent sequential decision problem. Putting incentives to one side for
now, we also define and solve an MDP formalization of the problem. We consider
a finite-horizon problem1 with a set T of discrete time points and a sequence of
decisions k = {k1, . . . , kT }, where kt ∈ Kt and Kt is the set of feasible decisions
in period t. Agent i ∈ I arrives at time ai ∈ T , departs at time di ∈ T , and has
value vi(k) ≥ 0 for the sequence of decisions k. By assumption, an agent has no

1The model can be trivially extended to consider infinite horizons if all agents share
the same discount factor, but will require some care for more general settings.



value for decisions outside of interval [ai, di]. Agents also face payments, which we
allow in general to be collected after an agents departure. Collectively, information
θi = (ai, di, vi) defines the type of agent i with θi ∈ Θ. Agent types are sampled
i.i.d. from a probability distribution f(θ), assumed known to the agents and to
the central mechanism. We allow multiple agents to arrive and depart at the same
time. Agent i, with type θi, receives utility ui(k, p; θi) = vi(k; θi) − p, for decisions
k and payment p. Agents are modeled as expected-utility maximizers. We adopt as
our goal that of maximizing the expected total sequential value across all agents.

If we were to simply ignore incentive issues, the expected-value maximizing decision
problem induces an MDP. The state2 of the MDP at time t is the history-vector
ht = (θ1, . . . , θt; k1, . . . , kt−1), and includes the reported types up to and including
period t and the decisions made up to and including period t − 1. The set of all
possible states at time t is denoted Ht. The set of all possible states across all time is

H =
⋃T+1

t=1 Ht. The set of decisions available in state ht is Kt(ht). Given a decision
kt ∈ Kt(ht) in state ht, there is some probability distribution Prob(ht+1|ht, kt)
over possible next states ht+1 determined by the random new agent arrivals, agent
departures, and the impact of decision kt. This makes explicit the dynamics that
were left implicit in type distribution θi ∈ f(θi), and includes additional information
about the domain.

The objective is to make decisions to maximize the expected total value across all
agents. We define a payoff function for the induced MDP as follows: there is a
payoff Ri(ht, kt) = vi(k≤t; θi) − vi(k≤t−1; θi), that becomes available from agent i

upon taking action kt in state ht. With this, we have
∑τ

t=1 Ri(ht; kt) = vi(k≤τ ; θi),
for all periods τ . The summed value,

∑

i Ri(ht, kt), is the payoff obtained from all
agents at time t, and is denoted R(ht, kt). By assumption, the reward to an agent
in this basic online MD problem depends only on decisions, and not on state. The
transition probabilities and the reward function defined above, together with the
feasible decision space, constitute the induced MDP Mf .

Given a policy π = {π1, π2, . . . , πT } where πt : Ht → Kt, an MDP defines an MDP-
value function V π as follows: V π(ht) is the expected value of the summed payoff
obtained from state ht onwards under policy π, i.e., V π(ht) = Eπ{R(ht, π(ht)) +
R(ht+1, π(ht+1))+ · · ·+R(hT , π(hT ))}. An optimal policy π∗ is one that maximizes
the MDP-value of every state3 in H. The optimal MDP-value function V ∗ can be
computed via the following value iteration algorithm: for t = T − 1, T − 2, . . . , 1

∀h ∈ Ht V ∗(h) = max
k∈Kt(h)

[R(h, k) +
∑

h′∈Ht+1

Prob(h′|h, k)V ∗(h′)]

where V ∗(h ∈ HT ) = maxk∈KT (h) R(h, k). This algorithm works backwards in time
from the horizon and has time complexity polynomial in the size of the MDP and
the time horizon T .

Given the optimal MDP-value function, the optimal policy is derived as follows: for
t < T

π∗(h ∈ Ht) = arg max
k∈Kt(h)

[R(h, k) +
∑

h′∈Ht+1

Prob(h′|h, k)V ∗(h′)]

and π∗(h ∈ HT ) = arg maxk∈KT (h) R(h, k). Note that we have chosen not to
subscript the optimal policy and MDP-value by time because it is implicit in the
length of the state.

2Using histories as state in the induced MDP will make the state space very large.
Often, there will be some function g for which g(h) is a sufficient statistic for all possible
states h. We ignore this possibility here.

3It is known that a deterministic optimal policy always exists in MDPs[6].



Let R<t′(ht) denote the total payoff obtained prior to time t′ for a state ht with
t ≥ t′. The following property of MDPs is useful.

Lemma 1 (MDP value-consistency) For any time t < T , and for any policy π,
E{ht+1,...,hT |ht,π}{R<t′(ht′)+V π(ht′)} = R<t(ht)+V π(ht), for all t′ ≥ t, where the
expectation is taken with respect to a (correct) MDP model, Mf , given information
up to and including period t and policy π.

We will need to allow for incorrect models, Mf , because agents may misreport their

true types θ as untruthful types θ̂. Let ht(θ̂;π) denote the state at time t produced

by following policy π on agents with reported types θ̂. Payoff, R(ht, kt), will always
denote the payoff with respect to the reported valuations of agents; in particular,

R<t′(θ̂;π) denotes the total payoff prior to period t′ obtained by applying policy π

to reported types θ̂.

Example. (WiFi at Starbucks) [2] There is a finite set of WiFi (802.11b) channels
to allocate to customers that arrive and leave a coffee house. A decision defines an
allocation of a channel to a customer for some period of time. There is a known
distribution on agent valuations and a known arrival and departure process. Each
customer has her own value function, for example “I value any 10 minute connection
in the next 30 minutes a $0.50.” The decision space might include the ability to delay
making a decision for a new customer, before finally making a definite allocation
decision. At this point the MDP reward would be the total value to the agent for
this allocation into the future.

The following domain properties are required to formally state the economic prop-
erties of our online VCG mechanism. First, we need value-monotonicity, which will
be sufficient to provide for voluntary participation in our mechanism. Let θi ∈ ht

denote that agent i with type θi arrived in some period t′ ≤ t in history ht.

Definition 1 (value-monotonicity) MDP, Mf , satisfies value-monotonicity if

for all states, ht, the optimal MDP-value function satisfies V ∗(ht(θ̂ ∪ θi;π
∗)) −

V ∗(ht(θ̂;π
∗)) ≥ 0, for agent i with type θi that arrives in period t.

Value-monotonicity requires that the arrival of each additional agent has a positive
effect on the expected total value from that state forward. In WiFi at Starbucks,
this is satisfied because an agent with a low value can simply be ignored by the
mechanism. It may fail in other problems, for instance in a physical domain with a
new robot that arrives and blocks the progress of other robots.

Second, we need no-positive-externalities, which will be sufficient for our mecha-
nisms to run without payment deficits to the center.

Definition 2 (no-positive-externalities) MDP, Mf , satisfies no-positive-
externalities if for all states, ht, the optimal MDP-value function satisfies

V ∗(ht(θ̂ ∪ θi;π
∗)) − vi(π

∗(ht(θ̂ ∪ θi;π
∗)); θi) ≤ V ∗(ht(θ̂;π

∗)), for agent i with type
θi that arrives in period t.

No-positive-externalities requires that the arrival of each additional agent can only
make the other agents worse off in expectation. This holds in WiFi at Starbucks,
because a new agent can take resources from other agents, but not in general,
for instance when agents are both providers and consumers of resources or when
multiple agents are needed to make progress.



3 The Delayed VCG Mechanism

In this section, we define the delayed VCG mechanism, which was introduced in
Friedman and Parkes [2]. The mechanism implements a sequence of decisions based
on agent reports but delays final payments until the final period T . We prove that
the delayed VCG mechanism brings truth-revelation into a Bayes-Nash equilibrium
in combination with an optimal MDP policy.

The delayed VCG mechanism is a direct-revelation online mechanism (DRM). The
strategy space restricts an agent to making a single claim about its type. Formally,
an online direct-revelation mechanism, M = (Θ;π, p), defines a feasible type space
Θ, along with a decision policy π = (π1, . . . , πT ), with πt : Ht → Kt, and a payment
rule p = (p1, . . . , pT ), with pt : Ht → R

N , such that pt,i(ht) denotes the payment
to agent i in period t given state ht.

Definition 3 (delayed VCG mechanism) Given history h ∈ H, mechanism
MDvcg = (Θ;π, pDvcg), implements decisions kt = π(ht), and computes payment

p
Dvcg
i (θ̂;π) = Ri

≤T (θ̂;π) −
[

R≤T (θ̂;π) − R≤T (θ̂−i;π)
]

(1)

to agent i at the end of the final period, where R≤T (θ̂−i;π) denotes the total reported
payoff for the optimal policy in the system without agent i.

An agent’s payment is discounted from its reported value for the outcome by a term
equal to the total (reported) marginal value generated by its presence. Consider
agent i, with type θi, and let θ<i denote the types of agents that arrive before
agent i, and let θ>i denote a random variable (distributed according to f(θ)) for
the agents that arrive after agent i.

Definition 4 (Bayesian-Nash Incentive-Compatible) Mechanism MDvcg is
Bayesian-Nash incentive-compatible if and only if the policy π and payments satisfy:

Eθ>i
{vi(π(θ<i, θi, θ>i); θi) − p

Dvcg
i (θ<i, θi, θ>i;π)} (BNIC)

≥Eθ>i
{vi(π(θ<i, θ̂i, θ>i); θi) − p

Dvcg
i (θ<i, θ̂i, θ>i;π)}

for all types θ<i, all types θi, and all θ̂i 6= θi.

Bayes-Nash IC states that truth-revelation is utility maximizing in expectation,
given common knowledge about the distribution on agent valuations and arrivals
f(θ) and when other agents are truthful. Moreover, it implies immediate revelation,
because the type includes information about an agent’s arrival period.

Theorem 1 A delayed VCG mechanism, (Θ;π∗, pDvcg), based on an optimal policy
π∗ for a correct MDP model defined for a decision space that includes stalling is
Bayes-Nash incentive compatible.

Proof. Assume without loss of generality that the other agents are report-
ing truthfully. Consider some agent i, with type θi, and suppose agents θ<i

have already arrived. Now, the expected utility to agent i when it reports

type θ̂i, substituting for the payment term p
Dvcg
i , is Eθ>i

{vi(π
∗(θ<i, θ̂i, θ>i); θi) +

∑

j 6=i R
j
≤T (θ<i, θ̂i, θ>i;π

∗) − R≤T (θ<i, θ>i;π
∗)}. We can ignore the final term be-

cause it does not depend on the choice of θ̂i at all. Let τ denote the arrival period
ai of agent i, with state hτ including agent types θ<i, decisions up to and includ-
ing period τ − 1, and the reported type of agent i if it makes a report in period



ai. Ignoring R<τ (hτ ), which is the total payoff already received by agents j 6= i
in periods up to and including τ − 1, the remaining terms are equal to the ex-
pected value of the summed payoff obtained from state hτ onwards under policy π∗,

Eπ∗{vi(π
∗(hτ ); θi)+

∑

j 6=i vj(π
∗(hτ ); θ̂j)+vi(π

∗(hτ+1); θi)+
∑

j 6=i vj(π
∗(hτ+1); θ̂j)+

. . . + vi(π
∗(hT ); θi) +

∑

j 6=i vj(π
∗(hT ); θ̂j)}, defined with respect to the true type

of agent i and the reported types of agents j 6= i. This is the MDP-value for pol-
icy π∗ in state hτ , Eπ∗{R(hτ , π∗(hτ )) + R(hτ+1, π

∗(hτ+1)) + . . . + R(hT , π∗(hT ))},
because agents j 6= i are assumed to report their true types in equilibrium. We
have a contradiction with the optimality of policy π∗ because if there is some type

θ̂i 6= θi that agent i can report to improve the MDP-value of policy π∗, given types
θ<i, then we can construct a new policy π′ that is better than policy π∗; policy π′

is identical to π∗ in all states except hτ , when it implements the decision defined

by π∗ in the state with type θi replaced by type θ̂i. The new policy, π
′

, lies in the
space of feasible policies because the decision space includes stalling and can mimic
the effect of any manipulation in which agent i reports a later arrival time. ut

The effect of the first term in the discount in Equation 1 is to align the agent’s in-
centives with the system-wide objective of maximizing the total value across agents.
We do not have a stronger equilibrium concept than Bayes-Nash because the mech-
anism’s model will be incorrect if other agents are not truthful and its policy subop-
timal. This leaves space for useful manipulation. The following corollary captures
the requirement that the MDPs decision space must allow for stalling, i.e. it must
include the option to delay making a decision that will determine the value of agent
i until some period after the agent’s arrival. Say an agent has patience if di > ai.

Corollary 2 A delayed VCG mechanism cannot be Bayes-Nash incentive-
compatible if agents have any patience and the expected value of its policy can be
improved by stalling a decision.

If the policy can be improved through stalling, then an agent can improve its ex-
pected utility by delaying its reported arrival to correct for this, and make the
policy stall. This delayed VCG mechanism is ex ante efficient, because it im-
plements the policy that maximizes the expected total sequential value across
all agents. Second, it is interim individual-rational as long as the MDP sat-
isfies the value-monotonicity property. The expected utility to agent i in equi-
librium is Eθ>i{R≤T (θ<i, θi, θ>i;π

∗) − R≤T (θ<i, θ>i;π
∗)}, which is equivalent to

value-monotonicity. Third, the mechanism is ex ante budget-balanced as long
as the MDP satisfies the no-positive-externalities property. The expected pay-
ment by agent i, with type θi, to the mechanism is Eθ>i{R≤T (θ<i, θ>i;π

∗) −
(R≤T (θ<i, θi, θ>i;π

∗)−Ri
≤T (θ<i, θi, θ>i;π

∗))}, which is non-negative exactly when
the no-positive-externalities condition holds.

4 The Online VCG Mechanism

We now introduce the online VCG mechanism, in which payments are determined as
soon as all decisions are made that affect an agent’s value. Not only is this a better
fit with the practical needs of online mechanisms, but the online VCG mechanism
also enables better computational properties than the delayed mechanism.

Let V π(ht(θ̂−i;π)) denote the MDP-value of policy π in the system without agent
i, given reports θ−i from other agents, and evaluated in some period t.



Definition 5 (online VCG mechanism) Given history h ∈ H, mechanism
Mvcg = (Θ;π, pvcg) implements decisions kt = π(ht), and computes payment

p
vcg
i (θ̂;π) = Ri

≤mi
(θ̂;π) −

[

V π(hâi
(θ̂;π)) − V π(hâi

(θ̂−i;π))
]

(2)

to agent i in its commitment period mi, with zero payments in all other periods.

Note the payment is computed in the commitment period for an agent, which is
some period before an agent’s departure at which its value is fully determined. In
WiFi at Starbucks, this can be the period in which the mechanism commits to a
particular allocation for an agent.

Agent i’s payment in the online VCG mechanism is equal to its reported value from
the sequence of decisions made by the policy, discounted by the expected marginal
value that agent i will contribute to the system (as determined by the MDP-value
function for the policy in its arrival period). The discount is defined as the expected
forward looking effect the agent will have on the value of the system. Establishing
incentive-compatibility requires some care because the payment now depends on
the stated arrival time of an agent. We must show that there is no systematic
dependence that an agent can use to its advantage.

Theorem 3 An online VCG mechanism, (Θ;π∗, pvcg), based on an optimal policy
π∗ for a correct MDP model defined for a decision space that includes stalling is
Bayes-Nash incentive compatible.

Proof. We establish this result by demonstrating that the expected value of the
payment by agent i in the online VCG mechanism is the same as in the delayed VCG
mechanism, when other agents report their true types and for any reported type of
agent i. This proves incentive-compatibility, because the policy in this online VCG
mechanism is exactly that in the delayed VCG mechanism (and so an agent’s value
from decisions is the same), and with identical expected payments the equilibrium
follows from the truthful equilibrium of the delayed mechanism. The first term in

the payment (see Equation 2) is Ri
≤mi

(θ̂i, θ−i;π
∗) and has the same value as the

first term, Ri
≤T (θ̂i, θ−i;π

∗), in the payment in the delayed mechanism (see Equation

1). Now, consider the discount term in Equation 2, and rewrite this as:

V ∗(hâi
(θ̂i, θ−i;π

∗)) + Râi
(θ−i;π

∗) − V ∗(hâi
(θ−i;π

∗)) − Râi
(θ−i;π

∗) (3)

The expected value of the left-hand pair of terms in Equation 3 is equal to

V ∗(hâi
(θ̂i, θ−i;π

∗)) + Râi
(θ̂i, θ−i;π

∗) because agent i’s announced type has no ef-
fect on the reward before its arrival. Applying Lemma 1, the expected value of

these terms is constant and equal to the expected value of V ∗(ht′(θ̂i, θ−i;π
∗)) +

Rt′(θ̂i, θ−i;π
∗) for all t′ ≥ ai (with the expectation taken wrt history hai

available
to agent i in its true arrival period.) Moreover, taking t′ to be the final period, T ,

this is also equal to the expected value of R≤T (θ̂i, θ−i;π
∗), which is the expected

value of the first term of the discount in the payment in the delayed VCG mech-
anism. Similarly, the (negated) expected value of the right-hand pair of terms in
Equation 3 is constant, and equals V ∗(ht′(θ−i;π

∗)) + Rt′(θ−i;π
∗) for all t′ ≥ ai.

Again, taking t′ to be the final period T this is also equal to the expected value of
R≤T (θ−i;π

∗), which is the expected value of the second term of the discount in the
payment in the delayed VCG mechanism. ut

We have demonstrated that although an agent can systematically reduce the ex-
pected value of each of the first and second terms in the discount in its payment
(Equation 2) by delaying its arrival, these effects exactly cancel each other out.



Note that it also remains important for incentive-compatibility on the online VCG
mechanism that the policy allows stalling.

The online VCG mechanism shares the properties of allocative efficiency and
budget-balance with the delayed VCG mechanism (under the same conditions).
The online VCG mechanism is ex post individual-rational so that an agent’s
expected utility is always non-negative, a slightly stronger condition that for the
delayed VCG mechanism. The expected utility to agent i is V ∗(hai

) − V ∗(hai
\ i)

and non-negative because of the value-monotonicity property of MDPs.

The online VCG mechanism also suggests the possibility of new computational
speed-ups. The payment to an agent only requires computing the optimal-MDP
value without the agent in the state in which it arrives, while the delayed VCG
payment requires computing the sequence of decisions that the optimal policy would
have made in the counterfactual world without the presence of each agent.

5 Discussion

We described a direct-revelation mechanism for a general sequential decision mak-
ing setting with uncertainty. In the Bayes-Nash equilibrium each agent truthfully
reveals its private type information, and immediately upon arrival. The mecha-
nism induces an MDP, and implements the sequence of decisions that maximize
the expected total value across all agents. There are two important directions in
which to take this preliminary work. First, we must deal with the fact that for
most real applications the MDP that will need to be solved to compute the decision
and payment policies will be too big to be solved exactly. We will explore meth-
ods for solving large-scale MDPs approximately, and consider the consequences for
incentive-compatibility. Second, we must deal with the fact that the mechanism
will often have at best an incomplete and inaccurate knowledge of the distributions
on agent-types. We will explore the interaction between models of learning and
incentives, and consider the problem of adaptive online mechanisms.
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