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Abstract

We introduce an information theoretic method for nonparametric, non-
linear dimensionality reduction, based on the infinite cluster limit of rate
distortion theory. By constraining the information available to manifold
coordinates, a natural probabilistic map emerges that assigns original
data to corresponding points on a lower dimensional manifold. With
only the information-distortion trade off as a parameter, our method de-
termines the shape of the manifold, its dimensionality, the probabilistic
map and the prior that provide optimal description of the data.

1 A simple example

Some data sets may not be as complicated as they appear. Consider the set of points on a
plane in Figure 1. As a two dimensional set, it requires a two dimensional densityρ(x, y)
for its description. Since the data are sparse the density will be almost singular. We may
use a smoothing kernel, but then the data set will be described by a complicated combina-
tion of troughs and peaks with no obvious pattern and hence no ability to generalize. We
intuitively, however, see a strong one dimensional structure (a curve) underlying the data.
In this paper we attempt to capture this intuition formally, through the use of the infinite
cluster limit of rate distortion theory.

Any set of points can be embedded in a hypersurface of any intrinsic dimensionality if we
allow that hypersurface to be highly “folded.” For example, in Figure 1, any curve that
goes through all the points gives a one dimensional representation. We would like to avoid
such solutions, since they do not help us discover structure in the data. Looking for a
simpler description one may choose to penalize the curvature term [1]. The problem with
this approach is that it is not easily generalized to multiple dimensions, and requires the
dimensionality of the solution as an input.

An alternative approach is to allow curves of all shapes and sizes, but to send the reduced
coordinates through an information bottleneck. With a fixed number of bits, position along
a highly convoluted curve becomes uncertain. This will penalize curves that follow the data
too closely (see Figure 1). There are several advantages to this approach. First, it removes
the artificiality introduced by Hastie [2] of adding to the cost function only orthogonal er-
rors. If we believe that data points fall out of the manifold due to noise, there is no reason to
treat the projection onto the manifold as exact. Second, it does not require the dimension-



Figure 1: Rate distortion curve for a
data set of 25 points (red). We used
1000 points to represent the curve which
where initialized by scattering them uni-
formly on the plane. Note that the pro-
duced curve is well defined, one dimen-
sional and smooth.
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ality of the solution manifold as an input. By adding extra dimensions, one quickly looses
the precision with which manifold points are specified (due to the fixed information bottle-
neck). Hence, the optimal dimension emerges naturally. This also means that the method
works well in many dimensions with no adjustments. Third, the method handles sparse
data well. This is important since in high dimensional spaces all data sets are sparse, i.e.
they look like points in Figure 1, and the density estimation becomes impossible. Luckily,
if the data are truly generated by a lower dimensional process, then density estimation in
the data space is not important (from the viewpoint of prediction or any other). What is
critical is the density of the data along the manifold (known in latent variable modeling as
a prior), and our algorithm finds it naturally.

2 Latent variable models and dimensionality reduction

Recently, the problem of reducing the dimensionality of a data set has received renewed
attention [3,4]. The underlying idea, due to Hotelling [5], is that most of the variation in
many high dimensional data sets can often be explained by a few latent variables. Alterna-
tively, we say that rather than filling the whole space, the data lie on a lower dimensional
manifold. The dimensionality of this manifold is the dimensionality of the latent space and
the coordinate system on this manifold provides the latent variables.

Traditional tools of principal component analysis (PCA) and factor analysis (FA) are still
the most widely used methods in data analysis. They project the data onto a hyperplane, so
the reduced coordinates are easy to interpret. However, these methods are unable to deal
with nonlinear correlations in a data set. To accommodate nonlinearity in a data set, one
has to relax the assumption that the data is modeled by a hyperplane, and allow a general
low dimensional manifold of unknown shape and dimensionality. The same questions that
we asked in the previous section apply here. What do we mean by requiring that “the
manifold models the data well”? In the next section, we formalize this notion by defining
the manifold description of data as a doublet (the shape of the manifold and the projection
map). Note that we do not require the probability distribution over the manifold (known
for generative models [6,7] as a prior distribution over the latent variables and postulated a
priori). It is completely determined by the doublet.

Nonlinear correlations in data can also be accommodated implicitly, without constructing
an actual low dimensional manifold. By mapping the data from the original space to an
even higher dimensional feature space, we may hope that the correlations will become
linearized and PCA will apply. Kernel methods [8] allow us to do this without actually
constructing an explicit map to feature space. They introduce nonlinearity through an a
priori nonlinear kernel. Alternatively, autoassociative neural networks [9] force the data
through a bottleneck (with an internal layer of desired dimensionality) to produce a reduced



description. One of the disadvantages of these methods is that the results are not easy to
interpret.

Recent attempts to describe a data set with a low dimensional representation generally fol-
low into two categories: spectral methods and density modeling methods. Spectral methods
(LLE [3], ISOMAP [4], Laplacian eigenmaps [10]) give reduced coordinates of an a pri-
ori dimensionality by introducing a quadratic cost function in reduced coordinates (hence
eigenvectors are solutions) that mimics the relationships between points in the original data
space (geodesic distance for ISOMAP, linear reconstruction for LLE). Density modeling
methods (GTM [6], GMM [7]) are generative models that try to reproduce the data with
fewer variables. They require a prior and a parametric generative model to be introduced a
priori and then find optimal parameters via maximum likelihood.

The approach that we will take is inspired by the work of Kramer [9] and others who tried
to formulate dimensionality reduction as a compression problem. They tried to solve the
problem by building an explicit neural network encoder-decoder system which restricted
the information implicitly by limiting the number of nodes in the bottleneck layer. Extend-
ing their intuition with the tools of information theory, we recast dimensionality reduction
as a compression problem where the bottleneck is the information available to manifold
coordinates. This allows us to define the optimal manifold description as that which pro-
duces the best reconstruction of the original data set, given that the coordinates can only be
transmitted through a channel of fixed capacity.

3 Dimensionality reduction as compression

Suppose that we have a data setX in a high dimensional state spaceRD described by a
density functionρ(x). We would like to find a “simplified” description of this data set.
One may do so by visualizing a lower dimensional manifoldM that “almost” describes
the data. If we have a manifoldM and a stochastic mapPM : x → PM(µ|x) to points
µ on the manifold, we will say that they provide amanifold descriptionof the data setX.
Note that the stochastic map here is well justified: if a data point does not lie exactly on
the manifold then we should expect some uncertainty in the estimation of the value of its
latent variables. Also note that we do not need to specify the inverse (generative) map:
M→ RD; it can be obtained by Bayes’ rule.

The manifold description(M, PM) is a less than faithful representation of the data. To
formalize this notion we will introduce thedistortionmeasureD(M, PM, ρ):

D(M, PM, ρ) =
∫

x∈RD

∫
µ∈M

ρ(x)PM(µ|x)‖x− µ‖2dDxDµ. (1)

Here we have assumed the Euclidean distance function for simplicity.

The stochastic map,PM(µ|x), together with the density,ρ(x), define a joint probability
functionP (M, X) that allows us to calculate the mutual information between the data and
its manifold representation:

I(X,M) =
∫

x∈X

∫
µ∈M

P (x,µ) log
[

P (x,µ)
ρ(x)PM(µ)

]
dDxDµ. (2)

This quantity tells us how many bits (on average) are required to encodex into µ. If we
view the manifold representation ofX as a compression scheme, thenI(X,M) tells us the
necessary capacity of the channel needed to transmit the compressed data.

Ideally, we would like to obtain a manifold description{M, PM(M|X)} of the data set
X that provides both a low distortionD(M, PM, ρ) and a good compression (i.e. small



I(X,M)). The more bits we are willing to provide for the description of the data, the more
detailed a manifold that can be constructed. So there is a trade off between how faithful a
manifold representation can be and how much information is required for its description.
To formalize this notion we introduce the concept of anoptimal manifold.

DEFINITION. Given a data setX and a channel capacityI, a manifold description
(M, PM(M|X)) that minimizes the distortionD(M, PM, X), and requires only infor-
mationI for representing an element ofX, will be called anoptimal manifoldM(I,X).

Note that another way to define an optimal manifold is to require that the information
I(M, X) is minimized while the average distortion is fixed at valueD. The shape and the
dimensionality of optimal manifold depends on our information resolution (or the descrip-
tion length that we are willing to allow). This dependence captures our intuition that for
real world, multi-scale data, a proper manifold representation must reflect the compression
level we are trying to achieve.

To find the optimal manifold(M(I), PM(I)) for a given data setX, we must solve a
constrained optimization problem. Let us introduce a Lagrange multiplierλ that represents
the trade off between information and distortion. Then optimal manifoldM(I) minimizes
the functional:

F(M, PM) = D + λI. (3)

Let us parametrize the manifoldM by t (presumablyt ∈ Rd for somed ≤ D). The
functionγ(t) : t → M maps the points from the parameter space onto the manifold and
therefore describes the manifold. Our equations become:

D =
∫ ∫

dDx ddt ρ(x)P (t|x)‖x− γ(t)‖2, (4)

I =
∫ ∫

dDx ddt ρ(x)P (t|x) log
P (t|x)
P (t)

, (5)

F(γ(t), P (t|x)) = D + λI. (6)

Note that both information and distortion measures are properties of the manifold de-
scription doublet{M, PM(M|X)} and are invariant under reparametrization. We re-
quire the variations of the functional to vanish for optimal manifoldsδF/δγ(t) = 0 and
δF/δP (t|x) = 0, to obtain the following set of self consistent equations:

P (t) =
∫

dDx ρ(x)P (t|x), (7)

γ(t) =
1

P (t)

∫
dDxxρ(x)P (t|x), (8)

P (t|x) =
P (t)
Π(x)

e−
1
λ‖x−γ(t)‖2 , (9)

Π(x) =
∫

ddt P (t)e−
1
λ‖x−γ(t)‖2 . (10)

In practice we do not have the full densityρ(x), but only a discrete number of samples.
So we have to approximateρ(x) = 1

N

∑
δ(x− xi), whereN is the number of samples,

i is the sample label, andxi is the multidimensional vector describing theith sample.



Similarly, instead of using a continuous variablet we use a discrete sett ∈ {t1, t2, ..., tK}
of K points to model the manifold. Note that in(7− 10) the variablet appears only as an
argument for other functions, so we can replace the integral overt by a sum overk = 1..K.
ThenP (t|x) becomesPk(xi),γ(t) is nowγk, andP (t) is Pk. The solution to the resulting
set of equations in discrete variables(11−14) can be found by an iterative Blahut-Arimoto
procedure [11] with an additional EM-like step. Here(n) denotes the iteration step, andα
is a coordinate index inRD. The iteration scheme becomes:

P
(n)
k =

1
N

N∑
i=1

P
(n)
k (xi) (11)

γ
(n)
k,α =

1

P
(n)
k

1
N

N∑
i=1

xi,αP
(n)
k (xi), (12)

where α = 1, . . . , D,

Π(n)(xi) =
K∑

k=1

P
(n)
k e−

1
λ‖xi−γ(n)

k
‖2 (13)

P
(n+1)
k (xi) =

P
(n)
k

Π(n)(xi)
e−

1
λ‖xi−γ(n)

k
‖2 . (14)

One can initializeγ0
k andP 0

k (xi) by choosingK points at random from the data set and
letting γk = xi(k) and P 0

k = 1/K, then use equations (13) and (14) to initialize the
association mapP 0

k (xi). The iteration procedure(11− 14) is terminated once

max
k
|γn

k − γn−1
k | < ε, (15)

whereε determines the precision with which the manifold points are located. The above
algorithm requires the information distortion costλ = −δD/δI as a parameter. If we want
to find the manifold description(M, P (M|X)) for a particular value of informationI,
we can plot the curveI(λ) and, because it’s monotonic, we can easily find the solution
iteratively, arbitrarily close to a given value ofI.

4 Evaluating the solution

The result of our algorithm is a collection ofK manifold points,γk ∈ M ⊂ RD, and
a stochastic projection map,Pk(xi), which maps the points from the data space onto the
manifold. Presumably, the manifoldM has a well defined intrinsic dimensionalityd. If
we imagine a little ball of radiusr centered at some point on the manifold of intrinsic
dimensionalityd, and then we begin to grow the ball, the number of points on the manifold
that fall inside will scale asrd. On the other hand, this will not be necessarily true for the
original data set, since it is more spread out and resembles locally the whole embedding
spaceRD. The Grassberger-Procaccia algorithm [12] captures this intuition by calculating
the correlation dimension. First, calculate the correlation integral:

C(r) =
2

N(N − 1)

N∑
i=1

N∑
j>i

H(r − |xi − xj |), (16)

whereH(x) is a step function withH(x) = 1 for x > 0 andH(x) = 0 for x < 0. This
measures the probability that any two points fall within the ball of radiusr. Then define
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Figure 2: The semicircle. (a)N = 3150 points randomly scattered around a semicircle of
radiusR = 20 by a normal process withσ = 1 and the final positions of 100 manifold
points. (b) Log log plot ofC(r) vsr for both the manifold points (squares) and the original
data set (circles).

the correlation dimension at length scaler as the slope on the log log plot.

dcorr(r) =
d log C(r)

d log r
. (17)

For points lying on a manifold the slope remains constant and the dimensionality is fixed,
while the correlation dimension of the original data set quickly approaches that of the
embedding space as we decrease the length scale. Note that the slope at large length scales
always tends to decrease due to finite span of the data and curvature effects and therefore
does not provide a reliable estimator of intrinsic dimensionality.

5 Examples

5.1 Semi-Circle

We have randomly generatedN = 3150 data points scattered by a normal distribution with
σ = 1 around a semi-circle of radiusR = 20 (Figure 2a). Then we ran the algorithm with
K = 100 andλ = 8, and terminated the iterative algorithm once the precisionε = 0.1 had
been reached. The resulting manifold is depicted in red.

To test the quality of our solution, we calculated the correlation dimension as a function of
spatial scale for both the manifold points and the original data set (Figure 2b). As one can
see, the manifold solution is of fixed dimensionality (the slope remains constant), while the
original data set exhibits varying dimensionality. One should also note that the manifold
points havedcorr(r) = 1 well into the territory where the original data set becomes two
dimensional. This is what we should expect: at a given information level (in this case,
I = 2.8 bits), the information about the second (local) degree of freedom is lost, and the
resulting structure is one dimensional.

A note about the parameters. LettingK →∞ does not alter the solution. The information
I and distortionD remain the same, and the additional pointsγk also fall on the semi-circle
and are simple interpolations between the original manifold points. This allows us to claim
that what we have foundis a manifold, and not an agglomeration of clustering centers.
Second, varyingλ changes the information resolutionI(λ): for smallλ (high information
rate) the local structure becomes important. At high information rate the solution undergoes
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Figure3: S-shaped sheet in 3D. (a)N = 2000 random points on a surface of an S-shaped
sheet in 3D. (b) Normal noise added. XY-plane projection of the data. (c) Optimal manifold
points in 3D, projected onto an XY plane for easy visualization.

a phase transition, and the resulting manifold becomes two dimensional to take into account
the local structure. Alternatively, if we takeλ → ∞, the cost of information rate becomes
very high and the whole manifold collapses to a single point (becomes zero dimensional).

5.2 S-surface

Here we tookN = 2000 points covering an S-shaped sheet in three dimensions (Figure
3a), and then scattered the position of each point by adding Gaussian noise. The resulting
manifold is difficult to visualize in three dimensions, so we provided its projection onto
an XY plane for an illustrative purpose (Figure 3b). After running our algorithm we have
recovered the original structure of the manifold (Figure 3c).

6 Discussion

The problem of finding low dimensional manifolds in high dimensional data requires reg-
ularization to avoid hgihly folded, Peano curve like solutions which are low dimensional
in the mathematical sense but fail to capture our geometric intuition. Rather than con-
straining geometrical features of the manifold (e.g., the curvature) we have constrained the
mutual information between positions on the manifold and positions in the original data
space, and this is invariant to all invertible coordinate transformations in either space. This
approach enforces “smoothness” of the manifold only implicitly, but nonetheless seems
to work. Our information theoretic approach has considerable generality relative to meth-
ods based on specific smoothing criteria, but requires a separate algorithm, such as LLE, to
give the manifold points curvilinear coordinates. For data points not in the original data set,
equations (9-10) and (13-14) provide the mapping onto the manifold. Eqn. (7) gives the
probability distribution over the latent variable, known in the density modeling literature as
“the prior.”

The running time of the algorithm is linear inN . This compares favorably with other meth-
ods and makes it particularly attractive for very large data sets. The number of manifold
pointsK usually is chosen as large as possible, given the computational constraints, to have
a dense sampling of the manifold. However, a value ofK << N is often sufficient, since
D(λ, K) → D(λ) andI(λ, K) → I(λ) approach their limits rather quickly (the conver-
gence improves for largeλ and deteriorates for smallλ). In the example of a semi-circle,
the value ofK = 30 was sufficient at the compression level ofI = 2.8 bits. In general, the
threshold value forK scales exponentially with the latent dimensionality (rather than with
the dimensionality of the embedding space).

The choice ofλ depends on the desired information resolution, sinceI depends onλ.
Ideally, one should plot the functionI(λ) and then choose the region of interest.I(λ)



is a monotonically decreasing function, with the kinks corresponding to phase transitions
where the optimal manifold abruptly changes its dimensionality. In practice, we may want
to run the algorithm only for a few choices ofλ, and we would like to start with values
that are most likely to correspond to a low dimensional latent variable representation. In
this case, as a rule of thumb, we chooseλ smaller, but on the order of the largest linear
dimension (i.e.

√
λ/2 ∼ Lmax). The dependence of the optimal manifoldM(I) on

information resolution reflects the multi-scale nature of the data and should not be taken as
a shortcoming.
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