
Approximate Policy Iteration
with a Policy Language Bias

Alan Fern and SungWook Yoon and Robert Givan
Electrical and Computer Engineering, Purdue University, W. Lafayette, IN 47907

Abstract
We explore approximate policy iteration, replacing the usual cost-
function learning step with a learning step in policy space. We give
policy-language biases that enable solution of very large relational
Markov decision processes (MDPs) that no previous technique can solve.
In particular, we induce high-quality domain-specific planners for clas-
sical planning domains (both deterministic and stochastic variants) by
solving such domains as extremely large MDPs.

1 Introduction
Dynamic-programming approaches to finding optimal control policies in Markov decision
processes (MDPs) [4, 14] using explicit (flat) state space representations break down when
the state space becomes extremely large. More recent work extends these algorithms to
use propositional [6, 11, 7, 12] as well as relational [8] state-space representations. These
extensions have not yet shown the capacity to solve large classical planning problems such
as the benchmark problems used in planning competitions [2]. These methods typically
calculate a sequence of cost functions. For familiar STRIPS planning domains (among
others), useful cost functions can be difficult or impossible to represent compactly.
The above techniques guarantee a certain accuracy at each stage. Here, we focus on in-
ductive techniques that make no such guarantees. Existing inductive forms of approximate
policy iteration (API) select compactly represented, approximate cost functions at each it-
eration of dynamic programming [5], again suffering when such representation is difficult.
We know of no previous work that applies any form of API to benchmark problems from
classical planning.1 Perhaps one reason is the complexity of typical cost functions for
these problems, for which it is often more natural to specify a policy space. Recent work
on inductive policy selection in relational planning domains [17, 19, 28], has shown that
useful policies can be learned using a policy-space bias, described by a generic knowledge
representation language. Here, we incorporate that work into a practical approach to API
for STRIPS planning domains.
We replace the use of cost-function approximations as policy representations in API2 with
direct, compact state-action mappings, and use a standard relational learner to learn these
mappings. We inherit from familiar API methods a (sampled) policy-evaluation phase
using simulation of the current policy, or rollout [25], and an inductive policy-selection
phase inducing an approximate next policy from sampled current policy values.

1Recent work in relational reinforcement learning has been applied to STRIPS problems with
much simpler goals than typical benchmark planning domains, and is discussed below in Section 5.

2In concurrent work, [18] pursued a similar approach to API in attribute-value domains.

We evaluate our API approach in several STRIPS planning domains, showing iterative
policy improvement. Our technique solves entire planning domains, finding a policy that
can be applied to any problem in the domain, rather than solving just a single problem
instance from the domain. We view each planning domain as a single large MDP where
each “state” specifies both the current world and the goal. The API method thus learns
control knowledge (a “policy”) for the given planning domain.
Our API technique naturally leverages heuristic functions (cost function estimates), if
available—this allows us to benefit from recent advances in domain-independent heuris-
tics for classical planning, as discussed below. Even when greedy heuristic search solves
essentially none of the domain instances, our API technique successfully bootstraps from
the heuristic guidance. We also demonstrate that our technique is able to iteratively im-
prove policies that correspond to previously published hand-coded control knowledge (for
TL-plan [3]) and policies learned by Yoon et al. [28]. Our technique gives a new way of
using heuristics in planning domains, complementing traditional heuristic search strategies.

2 Approximate Policy Iteration
We first review API for a general, action-simulator–based MDP representation, and later,
in Section 3, detail a particular representation of planning domains as relational MDPs and
the corresponding policy-space learning bias.
Problem Setup. We follow and adapt [16] and [5]. We represent an MDP using a genera-
tive model 〈S,A, T,C, I〉, where S is a finite set of states, A is a finite set of actions, and
T is a randomized “action-simulation” algorithm that, given state s and action a, returns a
next state t. The component C is an action-cost function that maps S ×A to real-numbers,
and I is a randomized “initial-state algorithm” with no inputs that returns a state in S. We
sometimes treat I and T (s, a) as random variables.
For MDPM = 〈S,A, T,C, I〉, a policy π is a (possibly stochastic) mapping from S to A.
The cost function Jπ

M (s) and the Q-cost function Qπ
M (s, a) are the unique solutions to

Qπ
M (s, a) = C(s, a) + αE[Jπ

M (T (s, a))], where Jπ
M (s) = E[Qπ

M (s,π (s))],

representing the expected, cumulative, discounted cost of following policy π inM starting
from state s, and where 0 ≤ α < 1 is the discount factor. In this work, we seek to
heuristically minimize E[Jπ

M (I)], due to the complexity of the problems we consider.
Given a current policy π, we can define a new improved policy PI[π](s) by
argmina∈AQπ

M (s, a). The cost function of PI[π] is guaranteed to be no worse than that
of π at each state and to improve at some state for non-optimal π. Exact policy iteration
iterates policy improvement (PI) from any initial policy to reach an optimal fixed point.
Policy improvement is divided into two steps: computing Jπ

M (policy evaluation) and then
computing Qπ

M and selecting the minimizing action (policy selection).
Approximate Policy Iteration. API, as described in [5], heuristically approximates pol-
icy iteration in large state spaces by using an approximate policy-improvement operator
trained with Monte-Carlo simulation. The approximate operator performs policy evalua-
tion by simulation—evaluating a policy π at a state s by drawing some number of sample
trajectories of π starting at s—and performs policy selection by constructing a training set
of samples of either the J or Q cost functions from a “small” but “representative” set of
states and then using this training set to induce a new “approximately improved” policy.
The use of API assumes that states and perhaps actions are represented in factored form
(typically, a feature vector) that facilitates generalizing properties of the training data to the
entire state and action spaces. Due to API’s inductive nature, there are typically no guaran-
tees for policy improvement—nevertheless, API often “converges” usefully, e.g. [24, 26].
We start API by providing it with an initial policy π0 and a real-valued heuristic function

H , whereH(s) is interpreted as an estimate of the cost of state s (presumably with respect
to the optimal policy). We note thatH or π0 may be trivial, i.e. always returning a constant
or random action respectively. For API to be effective, however, it is important that π0 and
H combine to provide guidance toward improvement. For example, in goal-based planning
domains either π0 should occasionally reach a goal or H should provide non-trivial goal-
distance information. In our experiments we consider scenarios that use different types of
initial policies and heuristics to bootstrap API.
Given π0, H , and an MDP M = 〈S, {a1, . . . , am}, T, C, I〉, API produces a policy se-
quence by iterating steps of approximate policy improvement—note that π0 is used in only
the initial iteration but the heuristic is always used. Approximate policy improvement
computes an (approximate) improvement π′ of a policy π by attempting to approximate
the output of exact policy improvement, i.e. π′(s) = argmina∈AQπ

M (s, a). There are two
steps: estimatingQ-costs for all actions at a representative set of states, and using resulting
data set to learn an approximation of π′. Figure 1 gives pseudo-code for our variant of API.
Step 1: Q-Cost Estimation via Rollout. (see [25]) Given π, we construct a training setD,
describing an improved policy π′, consisting of tuples 〈s,π (s), Q̂(s, a1), . . . , Q̂(s, am)〉.
For each sampled state s and action a, the term Q̂(s, a) refers to Qπ

M (s, a) as estimated by
drawing “sampling width” trajectories of length “horizon” from s and computing the aver-
age discounted trajectory cost over the sampled trajectories, where the cost of a trajectory
includes the value of the heuristic function at the horizon state. To get a “representative
set” of states, we include each state s visited by π′ (as indicated by the Q̂ estimates) within
“horizon” steps from one of “training set size” states drawn from the initial distribution.3

Step 2: Learn Policy. Select π′ with the goal of minimizing the cumulative Q̂-cost for π′

overD (approximating the same minimization over S in exact policy iteration). Traditional
API uses a cost-function space learning bias in this selection—in Section 3 we detail the
policy-space learning bias used by our technique. By labeling each training state with
the associated Q-costs for each action, rather than simply with the best action, we enable
the learner to make more informed trade-offs. We note that the inclusion of π(s) in each
training example enables the learner to normalize the data, if desired—e.g. our learner (see
Section 3) uses a bias that focuses on states where large improvement appears possible.

3 API for Relational Planning
In order to use our API framework, we represent classical planning domains (not just single
instances) as relationally factored MDPs. We then describe our compact relational policy
language and the associated learner for use in step 2 of our API framework.
Planning Domains as MDPs. We say that an MDP 〈S,A, T,C, I〉 is relational when S
and A are defined by giving the finite sets of objects O, predicates P , and action types Y .
A fact is a predicate applied to the appropriate number of objects. A state in S is a set of
facts (taken to be “true” in the state), and S is all such states. An action is an action type
applied to the appropriate number of objects, and the action spaceA is the set of all actions.
A classical planning domain is specified by providing a set of world predicates, action
types, and an action simulator. We simultaneously solve all problem instances of such a
planning domain4 by constructing a relational MDP as described below.
Let O be a fixed set of objects and Y be the set of action types from the planning domain.
Together, O and Y define the MDP action space. Each MDP state is a single problem

3It is important that states are sampled from π′ rather than π to match the training distribution to
the implied “test set” distribution.

4As an example, the blocks world is a classical planning domain, where a problem instance is an
initial block configuration and a set of goal conditions. Classical planners attempt to find solutions to
specific problem instances of a domain.

API (n, w, h, H,π 0)

// training set size n, sampling width w,
// horizon h, initial policy π0,
// cost estimator (heuristic function) H .
π ← π0;
loop

D ← Draw-Training-Set(n, w, h, H,π);
π ← Learn-Decision-List(D);

until satisfied with π;
//e.g. until change is small

Return π;

Draw-Training-Set(n, w, h, H,π)

// training set size n, sampling width w,
// horizon h, cost estimator H , current policy π

D ← ∅; E ← set of n states sampled from I;
for each state s0 ∈ E // Draw trajectory of

// sample states from s0s ← s0;
for i = 1 to h

Qπ(s) ← Policy-Rollout(π, s, w, h, H);
a ← action maximizing Qπ(s, a);
D ← 〈s,π (s), Qπ(s)〉 ∪ D;
s ← state sampled from T (s, a);

ReturnD;

Policy-Rollout (π, s, w, h, H) // Computes estimate of Qπ(s)

// policy π, state s, sampling width w, horizon h, cost estimator H

Initialize Qπ(s), a vector indexed by the actions in A, to zeroes;
for1 each action a in A

for2 sample = 1 to w
s′ ← s;
for3 step = 1 to h

Qπ(s, a) ← Qπ(s, a) + C(s′, π(s′));
s′ ← a state sampled from T (s′, π(s′)) // end for3

Qπ(s, a) ← Qπ(s, a) + H(s′); // end for2
Qπ(s, a) ← Qπ(s,a)

w // end for1
Return Qπ(s)

Figure 1: Pseudo-code for our API algorithm. The MDP 〈S,A, T,C, I〉 is assumed glob-
ally known. The general approach is inherited from [5], and is restated here for clarity.
Key differences are the use of Learn-Decision-List [28], as discussed in Section 3, and the
choice of action a in Draw-Training-Set (see Footnote 3).

instance (i.e. an initial state and a goal) from the planning domain by specifying both the
current world and the goal. We achieve this by letting P be the set of world predicates from
the classical domain together with a new set of goal predicates, one for each world predi-
cate. Goal predicates are named by prepending a ‘g’ to the corresponding world predicate.
Thus, the MDP states are sets of world and goal facts involving some or all objects in O.
The objective is to reach MDP states where the goal facts are a subset of the world facts
(goal states). The state {on-table(a), on(a, b), clear(b), gclear(b)} is thus a goal state in
a blocks-world MDP, but would not be a goal state without clear(b). We represent this
objective by defining C to assign zero cost to actions taken in goal states and a positive
cost to actions in all other states. In addition, we take T to be the action simulator from
the planning domain (e.g. as defined by STRIPS rules), modified to treat goal states as
terminal and to preserve without change all goal predicates. With this cost function, a
low-cost policy must arrive at goal states as “quickly” as possible. Finally, the initial state
distribution I can be any program that generates legal problem instances (MDP states) of
the planning domain—e.g. one might use a problem generator from a planning competition.
While here we assume and accurate T model is known, a more general reinforcement-
learning context would require learning an approximate T , trading off exploitation of this
model with exploration to improve it.
Taxonomic Decision List Policies. We adapt the API method of Section 2 by using, for
Step 2, the policy-space language bias and learning method of our previous work on learn-
ing policies in relational domains from small problem solutions [28], briefly reviewed here.

In relational domains, useful rules often take the form “apply action type a to any object in
set C”, e.g. “unload any object that is at its destination”. In [19], decision lists of such rules
were used as a language bias for learning policies. We use such lists, and represent the sets
of objects needed using class expressions C written in taxonomic syntax [20], defined by

C ::= C0 | anything | ¬C | (R C) | C ∩ C, with R ::= R0 | R−1 | R ∩ R | R∗.

Here, C0 is any one argument relation and R0 any binary relation from the predicates in P .
One argument relations denote the set of objects that they are true of, (R C) denotes the
image of the objects in class C under the binary relation R, and for the (natural) seman-
tics of the other constructs shown, please refer to [28]. Given a state s and a concept C
expressed in taxonomic syntax, it is straightforward to compute, in time polynomial in the
sizes of s and C, the set of domain objects that are represented by C in s.
Restricting our attention to one-argument–action types5, we write a policy as
〈C1:a1, C2:a2, . . . , Cn:an〉, where the Ci are taxonomic-syntax concepts and the ai are
action types. See Yoon et al. [28] for examples and details.
Our learner builds a decision-list of size-bounded rules by starting with the empty list and
greedily selecting a new rule to add, continuing until the list “covers” all of the training
data. This procedure is described in Yoon et al. [28], where a heuristically guided beam-
search is used to greedily select the next rule to add. The only difference between the
learner in [28] and the one used here is the heuristic function, which incorporates Q-cost
information (unlike [28]). Given training example 〈s,π (s), Q̂(s, a1), . . . , Q̂(s, am)〉 in
D, we define the Q-advantage of taking action a instead of π(s) in state s by ∆(s, a) =
Q̂(s,π (s))− Q̂(s, a). We take the heuristic value of a concept-action rule to be the number
of training examples where the rule “fires” plus the cumulative Q-advantage that the rule
achieves on those training examples.6 Using Q-advantage rather than Q-cost focuses the
learner toward instances where large improvement over the previous policy is possible.

4 Relational Planning Experiments
Our experiments support three claims. 1) Using only the guidance of an (often weak)
domain-independent heuristic, API learns effective policies for entire classical planning
domains. 2) Each learned policy is a domain-specific planner that is fast and empirically
compares well to the state-of-the-art domain-independent planner FF [13]. 3) API can im-
prove on previously published control knowledge and on that learned by previous systems.
Domains. We consider two deterministic domains with standard definitions and three
stochastic domains from Yoon et al. [28]—these are: BW(n), the n-block blocks world;
LW(l,t,p), the l location, t truck, p package logistics world; SBW(n), a stochastic vari-
ant of BW(n); SLW(l,c,t,p), the stochastic logistics world with c cars and t trucks; and
SPW(n), a version of SBW(n) with a paint action. We draw problem instances from each
domain by generating pairs of random initial states and goal conditions. The goal condi-
tions specify block configurations involving all blocks in blocks worlds, and destinations
for all packages in logistics worlds.7

Throughout, we use the domain-independent FF heuristic [13].8 Each experiment specifies
a planning domain and an initial policy and then iterates API9 until “no more progress” is
made. We evaluate each policy on 1000 random problem instances, recording the success

5Multiple argument actions can be simulated at some cost with multiple single argument actions.
6If the coverage term is not included, then covering a zero Q-advantage example is the same as

not covering it. But zero Q-advantage can be good (e.g. the previous policy is optimal in that state).
7PSTRIPS domain definitions are at http://www.ece.purdue.edu/∼givan/nips03-domains.html.
8Space precludes a description of this complex and well studied planning heuristic here.
9We use discount factor 1 and select large enough horizons to accurately rank most policies: 4×n

for BW(n) and SBW(n), 6×n for SPW(n), 12×p for LW(l,t,p) and SLW(l,c,t,p). Training set size is

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

iteration

BW(10) SR
AL/H

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

iteration

BW(15) SR
AL/H

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

iteration

LW(4,4,12) SR
AL(S)/H

(a) (b) (c)

Figure 2: Bootstrapping API with a domain-independent heuristic.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

iteration

TL-BW-b in BW(10) SR
AL/H

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

iteration

TL-BW-a in BW(10) SR
AL/H

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

iteration

TL-LW in LW(4,6,4)
SR

AL(S)/H

(a) (b) (c)

Figure 3: Using TL-Plan control knowledge as initial policies.

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

iteration

SPW(10)
Policy1 SR
Policy2 SR

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10

iteration

SLW(4,3,3,4)Policy1 SR
Policy2 SR

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

iteration

SBW(10)
Policy1 SR
Policy2 SR

(a) (b) (c)

Figure 4: Using previously learned initial policies.

ratio SR (fraction of problems solved within the horizon) and normalized average solution
length AL/H (average plan length in successful trials divided by horizon), omitting AL/H
for very low SR. Initial-policy performance is plotted at iteration zero.
Bootstrapping from the Heuristic. We consider the domain-independent initial policy10
FF-Greedy, which acts using the FF heuristic with one-step look-ahead. Figures 2a and b
show SR and AL/H after each API iteration for BW(10) and BW(15). FF-Greedy is poor
in both domains. There is an initial period of no (apparent) progress, followed by rapid
improvement to nearly perfect SR. Examination of the learned BW(15) policies shows that
early iterations find important concepts and later iterations find a policy that achieves a
small SR; at that point, rapid improvement ensues. Figure 2c shows the SR and AL/H
for LW(4,4,12). FF-Greedy performs very well here; nevertheless, API yields compact
declarative policies of the same quality as FF-Greedy. We replicated these experiments in
the stochastic variants of these domains, with similar results (not shown for space reasons).
Initial Hand-Coded Policies. TL-Plan [3] uses human-coded domain-specific control
knowledge to solve classical planning problems. Here we use initial policies for API that
correspond to the domain-specific control knowledge appearing in [3].11 For the blocks

100 trajectories, and sampling width is always 1, which worked well even for stochastic domains. A
sampling width of 1 corresponds to a preference to draw a small number of trajectories from each of
a variety of problems rather than a larger number from each of relatively fewer training problems—in
either case, the learner must be robust to the noise resulting from stochastic effects.

10What is considered “domain independent” here is the means of constructing the policy.
11We can not exactly capture the TL-Plan knowledge in our policy language. Instead, we write

policies that capture the knowledge but prune away some “bad” actions that TL-Plan might consider.

world TL-Plan provides three sets of control knowledge of increasing quality—we use the
best and second best sets to get the policies TL-BW-a and TL-BW-b, respectively. For
logistics there is only one set of knowledge given, yielding the policy TL-LW.
Figures 3a–3c show the SR and AL/H for API when starting with TL-BW-a and TL-BW-
b in BW(10) and TL-LW in LW(4,4,12). In each case, API improves the human-coded
policies. Starting with TL-BW-a and TL-LW, which have perfect SR, API uncovers policies
that maintain SR but improve AL/H by approximately 6.3% and 13%, respectively. Starting
with TL-BW-b, which has SR of only 30%, API quickly uncovers policies with perfect SR.
There is a dramatic difference in the quality of FF-Greedy (iteration 0 of Figure 2a), TL-
BW-a, and TL-BW-b in BW(10); yet, for each initial policy, API finds policies of roughly
identical quality—requiring more iterations for lower quality initial policies.
Initial Machine-Learned Policies. In Yoon et al. [28], policies were learned from so-
lutions to randomly drawn small problems for the three stochastic domains we test here,
among others. A significant range of policy qualities results, due to the random draw. Here,
we use API starting with some below-average policies from that work.12 Figures 4a-c show
results for SPW(10), SLW(4,3,3,4), and SBW(10). For each domain, API is shown to im-
prove the SR for two arbitrarily selected, below-average, learned starting policies to nearly
1.0. API successfully exploits the previous, noisy learning to robustly obtain a good policy.

Table 1: FF vs. learned policies.
FF (in C) API (Scheme)

Domains SR AL Time SR AL Time
BW(10) 1 33 0.1s 0.99 25 1.5s
BW(15) 0.96 58 2.7s 0.99 39 2.5s
BW(20) 0.75 62 27.7s 0.98 55 3.7s
BW(30) 0.14103166.0s 0.99 86 2.8s

LW(4,4,12) 1 42 0.0s 1 43 2.7s
LW(5,14,20) 1 73 0.4s 1 74 3.6s

Comparing learned policies to FF. A
learned policy corresponds to a domain-
specific planner for the target planning do-
main. Here we show that these policies
are competitive with FF, a state-of-the-art AI
planer, with respect to planning time and suc-
cess ratio. We selected a blocks-world pol-
icy and logistics-world policy corresponding
to the learned policies (beyond iteration 0) in
Figures 2a and c with the best SR, breaking
ties with AL. We applied FF and the appropriate selected policy to each of 1000 new test
problems from each of the domains shown in Table 1. Planning cutoff times were set at
600, 300, and 100 seconds for BW(30), BW(20), and all other domains, respectively. Ta-
ble 1 records the percent of problems solved within the time cutoff (SR), the average length
of successful trials (AL), and the average time for successful trials (Time) for both FF and
our two selected policies.
In blocks worlds with more than 10 blocks, the API policy improves on FF in every cate-
gory, with scaling much better to 20 and 30 blocks. Using the same heuristic information
(in a different way), API uncovers policies that significantly outperform FF. FF’s heuris-
tic is well suited to logistics worlds, eliminating search for these problems. Our method
performs equivalently, but for the slow prototype Scheme implementation.

5 Related Work
Typically, previous “learning for planning” systems [22] learn from small-problem solu-
tions to improve the efficiency and/or quality of planning. Two primary approaches are
to learn control knowledge for search-based planners, e.g. [23, 27, 10, 15, 1], and, more
closely related, to learn stand-alone control policies [17, 19, 28].
The former work is severely limited by the utility problem (see [21]), i.e., being “swamped”
by low utility rules. Critically, our policy-language bias confronts this issue by preferring
simpler policies. Regarding the latter, our work is novel in using API to iteratively improve

12For these stochastic domains we provide the heuristic (designed for deterministic domains) with
a deterministic STRIPS domain approximation (using the mostly likely outcome of each action).

policies, and leads to a more robust learner, as shown above. In addition, we leverage
a domain-independent planning heuristic to avoid the need for access to small problems.
Our learning approach is also not tied to having a base planner.
The most closely related work is relational reinforcement learning (RRL) [9], a form of on-
line API that learns relational cost-function approximations. Q-cost functions are learned
in the form of relational decision trees (Q-trees) and are used to learn corresponding poli-
cies (P -trees). The RRL results clearly demonstrate the difficulty of learning cost-function
approximations in relational domains. Compared to P -trees, Q-trees tend to generalize
poorly and be much larger. RRL has not yet demonstrated scalability to problems as com-
plex as those considered here—previous RRL blocks-world experiments include relatively
simple goals13, which lead to cost functions that are much less complex than the ones here.
However, unlike RRL, our API assumes an unconstrained simulator and (for the FF heuris-
tic) a world model, which must be provided or learned by additional techniques.

References
[1] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Using genetic programming to learn and improve

control knowledge. AIJ, 141(1-2):29–56, 2002.
[2] Fahiem Bacchus. The AIPS ’00 planning competition. AI Magazine, 22(3)(3):57–62, 2001.
[3] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search control knowl-

edge for planning. AIJ, 16:123–191, 2000.
[4] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
[5] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.
[6] Craig Boutilier and Richard Dearden. Approximating value trees in structured dynamic pro-

gramming. In Lorenza Saitta, editor, ICML, 1996.
[7] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Stochastic dynamic programming

with factored representations. AIJ, 121(1-2):49–107, 2000.
[8] Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic dynamic programming for first-

order MDPs. In IJCAI, 2001.
[9] S. Dzeroski, L. DeRaedt &K. Driessens. Relational reinforcement learning. MLJ, 43:7–52, 2001.
[10] Tara A. Estlin and Raymond J. Mooney. Multi-strategy learning of search control for partial-

order planning. In AAAI, 1996.
[11] Robert Givan, Thomas Dean, and Matt Greig. Equivalence notions and model minimization in

Markov decision processes. AIJ, 147(1-2):163–223, 2003.
[12] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projections for factored MDPs.

In IJCAI, pages 673–680, 2001.
[13] Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through

heuristic search. JAIR, 14:263–302, 2001.
[14] R. Howard. Dynamic Programming and Markov Decision Processes. MIT Press, 1960.
[15] Yi-Cheng Huang, Bart Selman, and Henry Kautz. Learning declarative control rules for

constraint-based planning. In ICML, pages 415–422, 2000.
[16] Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for near-

optimal planning in large markov decision processes. MLJ, 49(2–3):193–208, 2002.
[17] Roni Khardon. Learning action strategies for planning domains. AIJ, 113(1-2):125–148, 1999.
[18] M. Lagoudakis and R. Parr. Reinforcement learning as classification: Leveraging modern clas-

sifiers. In ICML, 2003.
[19] Mario Martin and Hector Geffner. Learning generalized policies in planning domains using

concept languages. In KRR, 2000.
[20] D. McAllester & R. Givan. Taxonomic syntax for 1st-order inference. JACM, 40:246–83, 1993.
[21] S. Minton. Quantitative results on the utility of explanation-based learning. In AAAI, 1988.
[22] S. Minton, editor. Machine Learning Methods for Planning. Morgan Kaufmann, 1993.
[23] S. Minton, J. Carbonell, C. A. Knoblock, D. R. Kuokka, O. Etzioni, and Y. Gil. Explanation-

based learning: A problem solving perspective. AIJ, 40:63–118, 1989.
[24] G. Tesauro. Practical issues in temporal difference learning. MLJ, 8:257–277, 1992.
[25] G. Tesauro & G. Galperin. Online policy improvement via monte-carlo search. In NIPS, 1996.
[26] J. Tsitsiklis and B. Van Roy. Feature-based methods for large scale DP. MLJ, 22:59–94, 1996.
[27] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, and J. Blythe. Integrating planning and

learning: The PRODIGY architecture. Journal of Experimental and Theoretical AI, 7(1), 1995.
[28] S. Yoon, A. Fern, and R. Givan. Inductive policy selection for first-order MDPs. In UAI, 2002.

13The most complex blocks-world goal for RRL was to achieve on(A, B) in an n block environ-
ment. We consider blocks-world goals that involve all n blocks.

