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Abstract 

To understand the brain mechanisms involved in reward prediction 
on different time scales, we developed a Markov decision task that 
requires prediction of both immediate and future rewards, and ana-
lyzed subjects’ brain activities using functional MRI. We estimated 
the time course of reward prediction and reward prediction error on 
different time scales from subjects' performance data, and used them 
as the explanatory variables for SPM analysis. We found topog-
raphic maps of different time scales in medial frontal cortex and 
striatum. The result suggests that different cortico-basal ganglia 
loops are specialized for reward prediction on different time scales. 

1  Introduction 

In our daily life, we make decisions based on the prediction of rewards on different 
time scales; immediate and long-term effects of an action are often in conflict, and 
biased evaluation of immediate or future outcome can lead to pathetic behaviors.  

Lesions in the central serotonergic system result in impulsive behaviors in humans [1], 
and animals [2, 3], which  can be attributed to deficits in reward prediction on a long 
time scale. Damages in the ventral part of medial frontal cortex (MFC) also cause 
deficits in decision-making that requires assessment of future outcomes [4-6]. 

A possible mechanism underlying these observations is that different brain areas are 
specialized for reward prediction on different time scales, and that the ascending 



 

serotonergic system activates those specialized for predictions in longer time scales 
[7].  

The theoretical framework of temporal difference (TD) learning [8] successfully 
explains reward-predictive activities of the midbrain dopaminergic system as well as 
those of the cortex and the striatum [9-13]. In TD learning theory, the predicted 
amount of future reward starting from a state s(t) is formulated as the “value function” 

V(t) = E[r(t + 1) + γ r(t + 2) + γ 2r(t + 3) + …]                    (1) 

and learning is based on the TD error 

δ(t) = r(t) + γ V(t) – V(t - 1).                                     (2) 

The ‘discount factor’ γ  controls the time scale of prediction; while only the immediate 
reward r(t + 1) is considered with γ = 0, rewards in the longer future are taken into 
account with γ  closer to 1. 

In order to test the above hypothesis [7], we developed a reinforcement learning task 
which requires a large value of discount factor for successful performance, and ana-
lyzed subjects’ brain activities using functional MRI. In addition to conventional 
block-design analysis, a novel model-based regression analysis revealed topographic 
representation of prediction time scale with in the cortico-basal ganglia loops. 

2  Methods 

2 . 1  Markov  Dec i s ion  Task  

In the Markov decision task (Fig. 1), markers on the corners of a square present four 
states, and the subject selects one of two actions by pressing a button (a1 = left button, 
a2 = right button) (Fig. 1A). The action determines both the amount of reward and the 
movement of the marker (Fig. 1B). In the REGULAR condition, the next trial is 
started from the marker position at the end of the previous trial. Therefore, in order to 
maximize the reward acquired in a long run, the subject has to select an action by 
taking into account both the immediate reward and the future reward expected from 
the subsequent state. The optimal behavior is to receive small negative rewards at 
states s2, s3, and s4 to obtain a large positive reward at state s1 (Fig. 1C). In the 
RANDOM condition, next trial is started from a random marker position so that the 
subject has to consider only immediate reward. Thus, the optimal behavior is to col-
lect a larger reward at each state (Fig. 1D). In the baseline condition (NO condition), 
the reward is always zero.  

In order to learn the optimal behaviors, the discount factor γ  has to be larger than 
0.3425 in REGULAR condition, while it can be arbitrarily small in RANDOM con-
dition. 

2 . 2  fMRI  imaging  

Eighteen healthy, right-handed volunteers (13 males and 5 females), gave informed 
consent to take part in the study, with the approval of the ethics and safety committees 
of ATR and Hiroshima University. 



 

A 1.5-Tesla scanner (Marconi, MAGNEX ECLIPSE, Japan) was used to acquire both 
structural T1-weighted images (TR = 12 s, TE = 450 ms, flip angle = 20 deg, matrix = 
256 × 256, FoV = 256 mm, thickness = 1 mm, slice gap = 0 mm ) and T2*-weighted 
echo planar images (TR = 4 s, TE = 55 msec, flip angle = 90 deg, 38 transverse slices, 
matrix = 64 × 64, FoV = 192 mm, thickness = 4 mm, slice gap = 0 mm, slice gap = 0 
mm) with blood oxygen level-dependent (BOLD) contrast. 

2 . 3  Data  analys i s  

 The data were preprocessed and analyzed with SPM99 (Friston et al., 1995; Well-
come Department of Cognitive Neurology, London, UK). The first three volumes of 
images were discarded to avoid T1 equilibrium effects. The images were realigned to 
the first image as a reference, spatially normalized with respect to the Montreal 
Neurological Institute EPI template, and spatially smoothed with a Gaussian kernel (8 
mm, full-width at half-maximum). 

Fig. 1. (A) Sequence of stimulus and response events in the Markov decision 
task. First, one of four squares representing present state turns green (0s). As 
the fixation point turns green (1s), the subject presses either the right or left 
button within 1 second. After 1s delay, the green square changes its position 
(2s), and then a reward for the current action is presented by a number (2.5s) 
and a bar graph showing cumulative reward during the block is updated 
(3.0s). One trial takes four seconds. Subjects performed five trials in the NO 
condition, 32 trials in the RANDOM condition, five trials in the NO condi-
tion, and 32 trials in the REGULAR condition in one block. They repeated 
four blocks; thus, the entire experiment consisted of 312 trials, taking about 
20 minutes.  (B) The rule of the reward and marker movement. (C) In the 
REGULAR condition, the optimal behavior is to receive small negative re-
wards –r1 (-10, -20, or -30 yen) at states s2, s3, and s4 to obtain a large positive 
reward +r2 (90, 100, or 110 yen) at state s1. (D) In the RANDOM condition, 
the next trial is started from random state. Thus, the optimal behavior is to 
select a larger reward at each state. 
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Images of parameter estimates for the contrast of interest were created for each subject. 
These were then used for a second-level group analysis using a one-sample t-test 
across the subjects (random effects analysis). 

We conducted two types of analysis. One was block design analysis using three 
boxcar regressors convolved with a hemodynamic response function as the reference 
waveform for each condition (RANDOM, REGULAR, and NO). The other was 
multivariate regression analysis using explanatory variables, representing the time 
course of the reward prediction V(t) and reward prediction error δ(t) estimated from 
subjects’ performance data (described below), in addition to three regressors repre-
senting the condition of the block.  

2 . 4  Est imat ion  o f  pred ic ted  reward  V ( t )  and  pred ic t ion  error  δ ( t )  

The time course of reward prediction V(t) and reward prediction error δ(t) were es-
timated from each subject’s performance data, i.e. state s(t), action a(t), and reward 
r(t), as follows. 

If the subject starts from a state s(t) and comes back to the same state after k steps, the 
expected cumulative reward V(t) should satisfy the consistency condition 

V(t) = r(t + 1) + γ r(t + 2) + … + γ k-1r(t + k) + γ kV(t).                 (3) 

Thus, for each time t of the data file, we calculated the weighted sum of the rewards 
acquired until the subject returned to the same state and estimated the value function 
for that episode as 
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The estimate of the value function V(t) at time t was given by the average of all pre-
vious episodes from the same state as at time t 
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where {t1, …, tL} are the indices of time visiting the same state as s(t), i.e. s(t1) = … = 
s(tL) = s(t). The TD error was given by the difference between the actual reward r(t) 
and the temporal difference of the value function V(t) according to equation (2). 

Assuming that different brain areas are involved in reward prediction on different 
time scales, we varied the discount factor γ  as 0, 0.3, 0.6, 0.8, 0.9, and 0.99. 

Fig. 2. The selected action 
of a representative single 
subject (solid line) and the 
group average ratio of 
selecting optimal action 
(dashed line) in (A) RAN-
DOM and (B) REGULAR 
conditions. 
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3  Results  

3 . 1  Behaviora l  resu l t s  

Figure 2 summarizes the learning performance of a representative single subject (solid 
line) and group average (dashed line) during fMRI measurement. Fourteen subjects 
successfully learned to take larger immediate rewards in the RANDOM condition (Fig. 
2A) and a large positive reward at s1 after small negative rewards at s2, s3 and s4 in the 
REGULAR condition (Fig. 2B). 

3 . 2  Block -des ign  ana lys i s  

In REGULAR vs. RANDOM contrast, we observed a significant activation in the 
dorsolateral prefrontal cortex (DLPFC) (Fig. 3A) (p < 0.001 uncorrected). In 
RANDOM vs. REGULAR contrast, we observed a significant activation in lateral 
orbitofrontal cortex (lOFC) (Fig. 3B) (p < 0.001 uncorrected). 

The result of block-design analysis suggests differential involvement of neural 
pathways in reward prediction on long and short time scales. The result in RANDOM 
vs. REGULAR contrast was consistent with previous studies that the OFC is involved 
in reward prediction within a short delay and reward outcome [14-20].  

3 . 3  Regress ion  ana lys i s   

We observed significant correlation with reward prediction V(t) in the MFC, DLPFC 
(all γ ), ventromedial insula (small γ ), dorsal striatum, amygdala, hippocampus, and 
parahippocampal gyrus (large γ ) (p < 0.001 uncorrected) (Fig. 4A). We also found 
significant correlation with reward prediction error δ(t) in the IPC, PMd, cerebellum 
(all γ ), ventral striatum (small γ ), and lateral OFC (large γ ) (p < 0.001 uncorrected) 
(Fig. 4B). As we changed the time scale parameter γ of reward prediction, we found 
rostro-caudal maps of correlation to V(t) in MFC with increasing γ.  

Fig. 3. (A) In REGULAR vs. RANDOM comparison, significant activation 
was observed in DLPFC ((x, y, z) = (46, 45, 9), peak t = 4.06) (p < 0.001 
uncorrected). (B) In RANDOM vs. REGULAR comparison, significant acti-
vation was observed in lateral OFC ((x, y, z) = (-32, 9, -21), peak t = 4.90) (p < 
0.001 uncorrected). 



 

4  Discussion 

In the MFC, anterior and ventral part was involved in reward prediction V(t) on 
shorter time scales (0 ≤ γ ≤ 0.6), whereas posterior and dorsal part was involved in 
reward prediction V(t) on longer time scales (0.6 ≤ γ ≤ 0.99). The ventral striatum 
involved in reward prediction error δ(t) on shortest time scale (γ = 0), while the 
dorsolateral striatum correlated with reward prediction V(t) on longer time scales (0.9 
≤ γ ≤ 0.99). These results are consistent with the topographic organization of 
fronto-striatal connection; the rostral part of the MFC project to the ventral striatum, 
whereas the dorsal and posterior part of the cingulate cortex project to the dorsolateral 
striatum [21]. 

In the MFC and the striatum, no significant difference in activity was observed in 
block-design analysis while we did find graded maps of activities with different 
values of γ. A possible reason is that different parts of the MFC and the striatum are 
concurrently involved with reward prediction on different time scales, regardless of 
the task context. Activities of the DLPFC and lOFC, which show significant differ-
ences in block-design analysis (Fig. 3), may be regulated according to the necessity 
for the task;  

Fig. 4. Voxels with a significant correlation (p < 0.001 uncorrected) with reward 
prediction V(t) and prediction error δ(t) are shown in different colors for dif-
ferent settings of the time scale parameter (γ  = 0 in red, γ  = 0.3 in orange, γ  = 
0.6 in yellow, γ  = 0.8 in green, γ  = 0.9 in cyan, and γ = 0.99 in blue). Voxels 
correlated with two or more regressors are shown by a mosaic of colors. (A) 
Significant correlation with reward prediction V(t) was observed in the MFC, 
DLPFC, dorsal striatum, insula, and hippocampus. Note the anterior-ventral to 
posterior-dorsal gradient with the increase in γ  in the MFC. (B) Significant 
correlation with reward prediction error δ(t) on γ  = 0 was observed in the ventral 
striatum.  



 

From these results, we propose the following mechanism of reward prediction on 
different time scales. The parallel cortico-basal ganglia loops are responsible for 
reward prediction on various time scales. The ‘limbic loop’ via the ventral striatum 
specializes in immediate reward prediction, whereas the ‘cognitive and motor loop’ 
via the dorsal striatum specialises in future reward prediction. Each loop learns to 
predict rewards on its specific time scale. To perform an optimal action under a given 
time scale, the output of the loop with an appropriate time scale is used for actual 
action selection.  

Previous studies in brain damages and serotonergic functions suggest that the MFC 
and the dorsal raphe, which are reciprocally connected [22, 23], play an important role 
in future reward prediction. The cortico-cortico projections from the MFC, or the 
serotonergic projections from the dorsal raphe to the cortex and the striatum may be 
involved in the modulation of these parallel loops. 

In present study, using a novel regression analysis based on subjects’ performance 
data and reinforcement learning model, we revealed the maps of time scales in reward 
prediction, which could not be found by conventional block-design analysis. Future 
studies using this method under pharmacological manipulation of the serotonergic 
system would clarify the role of serotonin in regulating the time scale of reward 
prediction. 
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