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Abstract

Predictive state representations (PSRs) use predictions of a set of tests to
represent the state of controlled dynamical systems. One reason why this
representation is exciting as an alternative to partially observable Markov
decision processes (POMDPs) is that PSR models of dynamical systems
may be much more compact than POMDP models. Empirical work on
PSRs to date has focused onlinear PSRs, which have not allowed for
compression relative to POMDPs. We introduce a new notion of tests
which allows us to define a new type of PSR that is nonlinear in general
and allows for exponential compression in some deterministic dynami-
cal systems. These new tests, callede-tests, are related to the tests used
by Rivest and Schapire [1] in their work with the diversity representation,
but our PSR avoids some of the pitfalls of their representation—in partic-
ular, its potential to be exponentially larger than the equivalent POMDP.

1 Introduction

A predictive state representation, or PSR, captures the state of a controlled dynamical sys-
tem not as a memory of past observations (as do history-window approaches), nor as a dis-
tribution over hidden states (as do partially observable Markov decision process or POMDP
approaches), but as predictions for a set of tests that can be done on the system. A test is
a sequence of action-observation pairs and the prediction for a test is the probability of
the test-observations happening if the test-actions are executed. Littman et al. [2] showed
that PSRs are as flexible a representation as POMDPs and are a more powerful represen-
tation than fixed-length history-window approaches. PSRs are potentially significant for
two main reasons: 1) they are expressed entirely in terms of observable quantities and this
may allow the development of methods for learning PSR models from observation data
that behave and scale better than do existing methods for learning POMDP models from
observation data, and 2) they may be much more compact than POMDP representations. It
is the latter potential advantage that we focus on in this paper.

All PSRs studied to date have been linear, in the sense that the probability of any sequence
of k observations given a sequence ofk actions can be expressed as a linear function of the
predictions of a core set of tests. We introduce a new type of test, thee-test, and present
the first nonlinear PSR that can be applied to a general class of dynamical systems. In
particular, in the first such result for PSRs we show that there exist controlled dynamical
systems whose PSR representation is exponentially smaller than its POMDP representation.



To arrive at this result, we briefly review PSRs, introduce e-tests and an algorithm to gen-
eratea core set of e-tests given a POMDP, show that a representation built using e-tests is
a PSR and that it can be exponentially smaller than the equivalent POMDP, and conclude
with example problems and a look at future work in this area.

2 Models of Dynamical Systems

A model of a controlled dynamical system defines a probability distribution over sequences
of observations one would get for any sequence of actions one could execute in the system.
Equivalently, given any history of interaction with the dynamical system so far, a model
defines the distribution over sequences of future observations for all sequences of future
actions. The state of such a model must be a sufficient statistic of the observed history; that
is, it must encode all the information conveyed by the history.

POMDPs [3, 4] and PSRs [2] both model controlled dynamical systems. In POMDPs, a
belief state is used to encode historical information; in PSRs, probabilities of particular
future outcomes are used. Here we describe both models and relate them to one another.

POMDPs A POMDP model is defined by a tuple〈S,A,O, T, O, b0〉, whereS, A, and
O are, respectively, sets of (unobservable) hypothetical underlying-system states, actions
that can be taken, and observations that may be issued by the system.T is a set of matrices
of dimension|S| × |S|, one for eacha ∈ A, such thatT a

ij is the probability that the next
state isj given that the current state isi and actiona is taken. O is a set of|S| × |S|
diagonal matrices, one for each action-observation pair, such thatOa,o

ii is the probability of
observingo after arriving in statei by taking actiona. Finally, b0 is the initial belief state,
a |S| × 1 vector whoseith element is the probability of the system starting in statei.

The belief state at historyh is b(S|h) = [prob(1|h) prob(2|h) . . . prob(|S||h)], where
prob(i|h) is the probability of the unobserved state beingi at historyh. After taking an
actiona in historyh and observingo, the belief state can be updated as follows:

bT (S|hao) =
bT (S|h)T aOa,o

bT (S|h)T aOa,o1|S|
(1|S| is the|S| × 1 vector consisting of all1’s)

PSRs Littman et al. [2] (inspired by the work of Rivest and Schapire [1] and Jaeger [5])
introduced PSRs to represent the state of a controlled dynamical system using predictions
of the outcomes of tests. They define a testt as a sequence of actions and observations
t = a1o1a2o2 · · · akok; we shall call this type of test asequence test, or s-testin short. An
s-test succeeds iff, when the sequence of actionsa1a2 · · · ak is executed, the system issues
the observation sequenceo1o2 · · · ok. The predictionp(t|h) is the probability that the s-test
t succeeds from observed historyh (of lengthn w.l.o.g.); that is

p(t|h) = prob(on+1 = o1, . . . , on+k = ok|h, an+1 = a1, . . . , an+k = ak) (1)

whereai andoi denote the action taken and the observation, respectively, at timei. In the
rest of this paper, we will abbreviate expressions like the right-hand side of Equation 1 by
prob(o1o2 · · · ok|ha1a2 · · · ak).

A set of s-testsQ = {q1q2 . . . q|Q|} is said to be acore set if it constitutes a PSR, i.e.,
if its vector of predictions,p(Q|h) = [p(q1|h) p(q2|h) . . . p(q|Q||h)], is a sufficient
statistic for any historyh. Equivalently, ifQ is a core set, then for any s-testt, there exists
a functionft such thatp(t|h) = ft(p(Q|h)) for all h. The prediction vectorp(Q|h) in
PSR models corresponds to belief stateb(S|h) in POMDP models. The PSRs discussed by
Littman et al. [2] arelinear PSRs in the sense that for any s-testt, ft is a linear function of
the predictions of the core s-tests; equivalently, the following equation

∀s-testst ∃ a weight vectorwt, s.t. p(t|h) = pT (Q|h)wt (2)



defines what it means forQ to constitute a linear PSR. Upon taking actiona in historyh
and observingo, the prediction vector can be updated as follows:

p(qi|hao) =
p(aoqi|h)
p(ao|h)

=
faoqi(p(Q|h))
fao(p(Q|h))

=
pT (Q|h)maoqi

pT (Q|h)mao
(3)

wherethe final right-hand side is only valid for linear PSRs. Thus a linear PSR model is
specified byQ and by the weight vectors in the above equationmaoq for all a ∈ A, o ∈
O, q ∈ Q ∪ φ (whereφ is the null sequence). It is pertinent to ask what sort of dynamical
systems can be modeled by a PSR and how many core tests are required to model a system.
In fact, Littman et al. [2] answered these questions with the following result:

Lemma 1 (Littman et al. [2])For any dynamical system that can be represented by a finite
POMDP model, there exists a linear PSR model of size (|Q|) no more than the size (|S|) of
the POMDP model.

Littman et al. prove this result by providing an algorithm for constructing a linear PSR
model from a POMDP model. The algorithm they present depends on the insight that
s-tests are differentiated by theiroutcome vectors. An outcome vectoru(t) for an s-test
t = a1o1a2o2 . . . akok is a |S| × 1 vector; theith component of the vector is the
probability of t succeeding given that the system is in the hidden statei, i.e., u(t) =
T a1

Oa1o1
T a2

Oa2o2
. . . T an

Oakok

1|S|. Consider the matrixU whose rows correspond to
the states inS and whose columns are the outcome vectors for all possible s-tests. LetQ
denote the set of s-tests associated with the maximal set of linearly independent columns
of U ; clearly |Q| ≤ |S|. Littman et al. showed thatQ is a core set for a linear PSR model
by the following logic. LetU(Q) denote the submatrix consisting of the columns ofU
corresponding to the s-tests∈ Q. Clearly, for any s-testt, u(t) = U(Q)wt for some vector
of weightswt. Therefore,p(t|h) = bT (S|h)u(t) = bT (S|h)U(Q)wt = p(Q|h)wt which
is exactly the requirement for a linear PSR (cf. Equation 2).

We will reuse the concept of linear independence of outcome vectors with a new type of
test to derive a PSR that is nonlinear in general. This is the first nonlinear PSR that can be
used to represent a general class of problems. In addition, this type of PSR in some cases
requires a number of core tests that is exponentially smaller than the number of states in
the minimal POMDP or the number of core tests in the linear PSR.

3 A new notion of tests

In order to formulate a PSR that requires fewer core tests, we look to a new kind of test—
the end test, ore-testin short. An e-test is defined by a sequence of actions and a single
ending observation. An e-teste = a1a2 · · · akok succeeds if, after the sequence of ac-
tions a1a2 · · · ak is executed,ok is observed. This type of test is inspired by Rivest and
Schapire’s [1] notion of tests in their work on modelingdeterministicdynamical systems.

3.1 PSRs with e-tests

Just as Littman et al. considered the problem of constructing s-test-based PSRs from
POMDP models, here we consider how to construct a e-test-based PSR, or EPSR, from
a POMDP model and will derive properties of EPSRs from the resulting construction.

The|S| × 1 outcome vector for an e-teste = a1a2 . . . akok is

v(e) = T a1
T a2

. . . T ak

Oakok

1|S|. (4)

Note that we are usingv’s to denote outcome vectors for e-tests andu’s to denote outcome
vectors for s-tests. Consider the matrixV whose rows correspond toS whose columns are



done← false;i← 0; L← {}
do until done

done← true
N ← generate all one-action extensions of length-itests inL
for each t ∈ N

if v(t) is linearly independent ofV (L) then
L← L ∪ {t}; done← false

end for
i← i + 1

end do
QV ← L

Figure 1: Our search algorithm to find a set of core e-tests given the outcome vectors.

the outcome vectors for all possible e-tests. LetQV denote the set of e-tests associated
with a maximal set of linearly independent columns of matrixV ; clearly|QV | ≤ |S|. Note
thatQV is not uniquely defined; there are many such sets. The hope is that the setQV is
a core set for an EPSR model of the dynamical system represented by the POMDP model.
But before we consider this hope, let us consider how we would findQV given a POMDP
model.

We can compute the outcome vector for any e-test from the POMDP parameters using
Equation 4. So we could compute the columns ofV one by one and check to see how many
linearly independent columns we find. If we ever find|S| linearly independent columns,
we know we can stop, because we will not find any more. However, if|QV | < |S|, then
how would we know when to stop? In Figure 1, we present a search algorithm that finds
a setQV in polynomial time. Our algorithm is adapted from Littman et al.’s algorithm for
finding core s-tests. The algorithm starts with all e-tests of length one and maintains a set
L of currently known linearly independent e-tests. At each iteration it searches for new
linearly independent e-tests among all one-action extensions of the e-tests it added toL at
the last iteration and stops when an iteration does not add to the setL.

Lemma 2 The search algorithm of Figure 1 computes the setQV in time polynomial in
the size of the POMDP.

Proof Computing the outcome vector for an e-test using Equation 4 is polynomial in the
number of states and the length of the e-test. There cannot be more than|S| e-tests in the
setL maintained by the search algorithm algorithm and only one-action extensions of the
e-tests inL ∪ O are ever considered. Each extension length considered must add an e-test
else the algorithm stops, and so the maximal length of each e-test inQV is upper bounded
by the number of states. Therefore, our algorithm returnsQV in polynomial time. �

Note that this algorithm is only practical if the outcome vectors have been found; this only
makes sense if the POMDP model is already known, as outcome vectors map POMDP
states to outcomes. We will address learning these models from observations in future
work [6]. Next we show that the prediction of any e-test can be computed linearly from the
prediction vector for the e-tests inQV .

Lemma 3 For any historyh and any e-teste, the predictionp(e|h) is some linear function
of prediction vectorp(QV |h), i.e.,p(e|h) = p(QV |h)we for some weight vectorwe.

Proof Let V (QV ) be the submatrix ofV containing the columns corresponding toQV .
By the definition ofQV , for any e-teste, v(e) = V (QV )we, for some weight vectorwe.
Furthermore, for any historyh, p(e|h) = b(S|h)v(e) = b(S|h)V (QV )we = p(QV |h)we.

�



Note that Lemma 3 does not imply thatQV constitutesa PSR, let alone a linear PSR, for
the definition of a PSR requires that the prediction of alls-testsbe computable from the
core test predictions. Next we turn to the crucial question: doesQV constitute a PSR?

Theorem 1 If V (QV ), defined as above with respect to some POMDP model of a dynam-
ical system, is a square matrix, i.e., the number of e-tests inQV is the number of states|S|
(in that POMDP model), thenQV constitutes alinear EPSR for that dynamical system.

Proof For any historyh, pT (QV |h) = bT (S|h)V (QV ). If V (QV ) is square then it is
invertible because by construction it has full rank, and hence for any historyh, bT (S|h) =
pT (QV |h)V −1(QV ). For any s-testt = a1o1a2o2 · · · akok,

pT (t|h) = bT (S|h)T a1
Oa1,o1

T a2
Oa2,o2

· · ·T ak

Oak,ok

1S (by first-principles definition)

= pT (QV |h)V −1(QV )T a1
Oa1,o1

T a2
Oa2,o2

· · ·T ak

Oak,ok

1S = pT (QV |h)wt

for some weight vectorwt. Thus,QV constitutes a linear EPSR as per the definition in
Equation 2. �

We note that the productT a1
Oa1,o1 · · ·T ak

Oak,ok

1S appears often in association with an
s-testt = a1o1 · · · akok, and abbreviate the productz(t). We similarly definez(e) =
T a1

Ta2 · · ·T ak

Oak,ok

1S for the e-teste = a1a2 · · · akok.

Staying with the linear EPSR case for now, we can define anupdate functionfor p(QV |h)
as follows: (remembering thatV (QV ) is invertible for this case)

p(ei|hao) =
p(aoei|h)
p(ao|h)

=
b(S|h)T aOa,oz(ei)

p(Q|h)mao
=

p(QV |h)V −1(QV )z(aoei)
p(QV |h)mao

=
p(QV |h)maoei

p(QV |h)mao

(5)

wherewe used the fact that the testao in the denominator is an e-test. (The form of the
linear EPSR update equation is identical to the form of the update in linear PSRs with
s-tests given in Equation 3). Thus, a linear EPSR model is defined byQV and the set of
weight vectors,maoe for all a ∈ A, o ∈ O, e ∈ {QV ∪ φ}, used in Equation 5.

Now, let us turn to the case when the number of e-tests inQV is less than|S|, i.e., when
V (QV ) is not a square matrix.

Lemma 4 In general, if the number of e-tests inQV is less than|S|, thenQV is not
guaranteed to be a linear EPSR.

Proof (Sketch) To prove this lemma, we must only find an example of a dynamical
system that is an EPSR but not a linear EPSR. In Section 4.3 we present ak-bit register as
an example of such a problem. We show in that section that the state space size is2k and
the number of s-tests in the core set of a linear s-test-based PSR model is also2k, but the
number of e-tests inQV is only k + 1. Note that this means that the rank of theU matrix
for s-tests is2k while the rank of theV matrix for e-tests isk +1. This must mean thatQV

is not a linear EPSR. We skip these details for lack of space. �

Lemma 4 leaves open the possibility that if|QV | < |S| thenQV constitutes a nonlinear
EPSR. We were unable, thus far, to evaluate this possibility for general POMDPs but we
did obtain an interesting and positive answer, presented in the next section, for the class of
deterministic POMDPs.

4 A Nonlinear PSR for Deterministic Dynamical Systems

In deterministic dynamical systems, the predictions of both e-tests and s-tests are binary
and it is this basic fact that allows us to prove the following result.



Theorem 2 For deterministic dynamical systems the set of e-testsQV is always an EPSR
and in general it is a nonlinear EPSR.

Proof For an arbitrary s-testt = a1o1a2o2 · · · akok, and some arbitrary historyh that is
realizable (i.e.,p(h) = 1), and for some vectorswa1o1 , wa1o1a2o2 , . . . ,wa1o1a2o2···akok of
length|QV |, we have

prob(o1o2 · · · ok|ha1a2 · · · ak) =

= prob(o1|ha1)prob(o2|ha1o1a2) · · · prob(ok|ha1o1a2o2 · · · ak−1ok−1ak)

= prob(o1|ha1)prob(o2|ha1a2) · · · prob(ok|ha1a2 · · · ak)

= (pT (QV |h)wa1o1)(pT (QV |h)wa1o1a2o2) · · · (pT (QV |h)wa1o1···akok)
= ft(p(QV |h))

In going from the second line to the third, we eliminate observations from the conditions by
noting that in a deterministic system, the observation emitted depends only on the sequence
of actions executed. In going from the third line to the fourth, we use the result of Lemma 3
that regardless of the size ofQV , the predictions for all e-tests for any historyh are linear
functions ofp(QV |h). This shows that for deterministic dynamical systems,QV , regardless
of its size, constitutes an EPSR. �

Update Function: Since predictions are binary in deterministic EPSRs,p(ao|h) must be 1
if o is observed after taking actiona in historyh:

p(ei|hao) = p(aoei|h)/p(ao|h) = p(aei|h) = p(QV |h)maei

where the second equality from the left comes about becausep(ao|h) = 1 and, because
o must be observed whena is executed,p(aoei|h) = p(aei|h), and the last equality used
the fact thataei is just some other e-test and so from Lemma 3 must be a linear function
of p(QV |h). It is rather interesting that even though the EPSR formed throughQV is
nonlinear (as seen in Theorem 2), the update function is in fact linear.

4.1 Diversity and e-tests

Rivest and Schapire’s [1] diversity representation, the inspiration for e-tests, applies only
to deterministic systems and can be explained using the binary outcome matrixV defined
at the beginning of Section 3.1. Diversity also uses the predictions of a set of e-tests as its
representation of state; it uses as many e-tests as there are distinct columns in the matrix
V . Clearly, at most there can be2|S| distinct columns and they show that there have to
be at leastlog2(|S|) distinct columns and that these bounds are tight. Thus the size of
the diversity representation can be exponentially smaller or exponentially bigger than the
size of a POMDP representation. While we use the same notion of tests as the diversity
representation, our use of linear independence of outcome vectors instead of equivalence
classes based on equality of outcome vectors allows us to use e-tests on stochastic systems.

Next we show through an example that EPSR models in deterministic dynamic systems
can lead to exponential compression over POMDP models in some cases while avoiding
the exponential blowup possible in Rivest and Schapire’s [1] diversity representation.

4.2 EPSRs can be Exponentially Smaller than Diversity

This first example shows a case in which the size of the EPSR representation is exponen-
tially smaller than the size of the diversity representation. The hit register (see Figure 2a)
is a k-bit register (these are thevalue bits) with an additional specialhit bit. There are
2k + 1 states in the POMDP describing this system—one state in which the hit bit is 1
and2k states in which the hit bit is 0 and the value bits take on different combinations of
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Figure 2: The two example systems. a) Thek-bit hit register. There arek value bits and the
special hit bit. The value of the hit bit determines the observation andk + 2 actions alter
the value of the bits; this is fully specified in Section 4.2. b) Thek-bit rotate register. The
value of the leftmost bit is observed; this bit can be flipped, and the register can be rotated
either to the right or to the left. This is described in greater detail in Section 4.3.

values. There arek + 2 actions: a flip actionFi for each value biti that inverts biti if the
hit bit is not set, a set actionSh that sets the hit bit if all the value bits are 0, and a clear
actionCh that clears the hit bit. There are two observations:Oh if the hit bit is set and
Om otherwise. Rivest and Schapire [1] present a similar problem (their version has noCh

action). The diversity representation requiresO(22k

) equivalence classes and thus tests,
whereas an EPSR has only2k + 1 core e-tests (see Table 1 for the core e-tests and update
function whenk = 2).

Table 1: Core e-tests and update functions for the 2-bit hit register problem.
update function for action

test F1 F2 Sh Ch

F1Oh p(F1Oh) p(F1Oh) p(ShOh) 0
ShOh p(F1ShOh) p(F2ShOh) p(ShOh) p(ShOh)

F1ShOh p(ShOh) p(F2F1ShOh) p(ShOh)− p(F1Oh)+
p(F1ShOh)

p(F1ShOh)−
p(F1Oh)

F2ShOh p(F2F1ShOh) p(ShOh) p(ShOh)− p(F1Oh)+
p(F2ShOh)

p(F2ShOh)−
p(F1Oh)

F2F1ShOh p(F2ShOh) p(F1ShOh) p(ShOh)− p(F1Oh)+
p(F2F1ShOh)

p(F2F1ShOh)−
p(F1Oh)

Lemma 5 For deterministic dynamical systems, the size of the EPSR representation is
always upper-bounded by theminimumof the size of the diversity representation and the
size of the POMDP representation.

Proof The size of the EPSR representation,|QV |, is upper-bounded by|S| by construc-
tion of QV . The number of e-tests used by diversity representation is the number of distinct
columns in the binaryV matrix of Section 3.1, while the number of e-tests used by the
EPSR representation is the number of linearly independent columns inV . Clearly the lat-
ter is upper-bounded by the former. As a quick example, consider the case of 2-bit binary
vectors: There are4 distinct vectors but only2 linearly independent ones. �

4.3 EPSRs can be Exponentially Smaller than POMDPs and the Original PSRs

This second example shows a case in which the EPSR representation uses exponentially
fewer tests than the number of states in the POMDP representation as well as the original
linear PSR representation. The rotate register illustrated in Figure 2b is ak-bit shift-register.



Table 2: Core e-tests and update function for the 4 bit rotate register problem.

update function for action
test R L F
FO1 p(FO1) + p(FFO1)− p(RO1) p(FO1) + p(FFO1)− p(LO1) p(FFO1)
RO1 p(RRO1) p(FFO1) p(RO1)
LO1 p(FFO1) p(RRO1) p(LO1)

FFO1 p(RO1) p(LO1) p(FO1)
RRO1 p(LO1) p(RO1) p(RRO1)

There are two observations:O1 is observed if the leftmost bit is1 andO0 is observed when
the leftmost bit is0. The three actions areR, which shifts the register one place to the
right with wraparound,L, which does the opposite, andF , which flips the leftmost bit.
This problem is also presented by Rivest and Schapire as an example of a system whose
diversity is exponentially smaller than the number of states in the minimal POMDP, which
is 2k. This is also the number of core s-tests in the equivalent linear PSR (we computed
these2k s-tests but do not report them here). The diversity is2k. However, the EPSR that
models this system has onlyk + 1 core e-tests. The tests and update function for the 4-bit
rotate register are shown in Table 2.

5 Conclusions and Future Work

In this paper we have used a new type of test, the e-test, to specify a nonlinear PSR for
deterministic controlled dynamical systems. This is the first nonlinear PSR for any general
class of systems. We proved that in some deterministic systems our new PSR models are
exponentially smaller than both the original PSR models as well as POMDP models. Sim-
ilarly, compared to the size of Rivest & Schapire’s diversity representation (the inspiration
for the notion of e-tests) we proved that our PSR models are never bigger but sometimes
exponentially smaller. This work has primarily been an attempt to understand the repre-
sentational implications of using e-tests; as future work, we will explore the computational
implications of switching to e-tests.
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