
Online Learning via Global Feedback
for Phrase Recognition

Xavier Carreras Llu ı́s Màrquez
TALP Research Center, LSI Department
Technical University of Catalonia (UPC)
Campus Nord UPC, E–08034 Barcelona
{carreras,lluism}@lsi.upc.es

Abstract

This work presents an architecture based on perceptrons to recognize
phrase structures, and an online learning algorithm to train the percep-
trons together and dependently. The recognition strategy applies learning
in two layers: a filtering layer, which reduces the search space by identi-
fying plausible phrase candidates, and a ranking layer, which recursively
builds the optimal phrase structure. We provide a recognition-based feed-
back rule which reflects to each local function its committed errors from
a global point of view, and allows to train them together online as percep-
trons. Experimentation on a syntactic parsing problem, the recognition
of clause hierarchies, improves state-of-the-art results and evinces the
advantages of our global training method over optimizing each function
locally and independently.

1 Introduction

Over the past few years, many machine learning methods have been successfully applied
to Natural Language tasks in which phrases of some type have to be recognized. Generally,
given an input sentence —as a sequence of words— the task is to predict a bracketing
for the sentence representing a structure of phrases, either sequential or hierarchical. For
instance, syntactic analysis of Natural Language provides several problems of this type,
such as partial parsing tasks [1, 2], or even full parsing [3].

The general approach consists of decomposing the global phrase recognition problem into
a number of local learnable subproblems, and infer the global solution from the outcomes
of the local subproblems. For chunking problems —in which phrases are sequentially
structured— the approach is typically to perform a tagging. In this case, local subproblems
include learning whether a wordopens,closes, or isinsidea phrase of some type (noun
phrase, verb phrase, . . .), and the inference process consists of sequentially computing
the optimal tag sequence which encodes the phrases, by means of dynamic programming
[1, 4, 5]. When hierarchical structure has to be recognized, additional local decisions are
required to determine the embedding of phrases, resulting in a more complex inference
process which recursively builds the global solution [3, 2, 6, 7]. In general, a learning
system for these tasks makes use of several learned functions which interact in some way
to determine the structure.

A usual methodology for solving the local subproblems is to use a discriminative learning
algorithmto learn a classifier for each local decision [1, 2]. Each individual classifier is
trained separately from the others, maximizing some local measure such as the accuracy of
the local decision. However, when performing the phrase recognition task, the classifiers
are used together and dependently, in the sense that one classifier predictions’ may affect
the prediction of another. Indeed, the global performance of a system is measured in terms
of precision and recall of the recognized phrases, which, although related, is not the local
classification accuracy measure for which the local classifiers are usually trained.

In this direction, recent works in the area provide alternative strategies in which the learning
process is driven from the global level. The general idea consists of moving the learning
strategy from the binary classification setting to a general ranking context into which the
global problem can be casted. Crammer and Singer [8] present a label-ranking algorithm,
in which several perceptrons receive feedback from the ranking they produce over a training
instance. Har-Peled et al. [9] study a general learning framework in which the constraints
between a number of linear functions and an output prediction allow to effectively learn a
desired label-ranking function. For structured outputs, and motivating this work, Collins
[10] introduces a variant of the perceptron for tagging tasks, in which the learning feedback
is globally given from the output of the Viterbi decoding algorithm.

In this paper we present a global learning strategy for the general task of recognizing
phrases in a sentence. We adopt the general phrase recognition strategy of our previous
work [6]. Given a sentence, learning is first applied at word level to identify phrase can-
didates of the solution. Then, learning is applied at a higher-order level in which phrase
candidates are scored to discriminate among competing ones. The overall strategy infers
the global solution by exploring with learning components a number of plausible solutions.

As a main contribution, we propose a recognition-based feedback rule which allows to learn
the decisions in the system as perceptrons, all in one go. The learning strategy works online
at sentence level. When visiting a sentence, the perceptrons are first used to recognize the
set of phrases, and then updated according to the correctness of the global solution. As a re-
sult, each local function is automatically adapted to the recognition strategy. Furthermore,
following [11] the final model incorporatesvotedprediction methods for the perceptrons
and the use of kernel functions. Experimenting on the Clause Identification problem [2] we
show the effectiveness of our method, evincing the benefits over local learning strategies
and improving the best results for the particular task.

2 Phrase Recognition

2.1 Formalization

Let x be a sentence formed byn wordsxi, with i ranging from0 to n − 1, belonging
to the sentence spaceX . Let K be a predefined set of phrase categories. For instance,
in syntactic parsingK may include noun phrases, verb phrases, prepositional phrases and
clauses, among others. Aphrase, denoted as(s, e)k, is the sequence of consecutive words
spanning from wordxs to wordxe, havings ≤ e, with categoryk ∈ K.

Let ph1 =(s1, e1)k1 andph2 =(s2, e2)k2 be two different phrases. We define thatph1 and
ph2 overlap iff s1 <s2≤e1 <e2 or s2 <s1≤e2 <e1 , and we note it asph1∼ph2. Also,
we define thatph1 is embeddedin ph2 iff s2≤s1≤e1≤ e2, and we note it asph1≺ph2.

Let P be the set of all possible phrases, expressed asP = {(s, e)k | 0 ≤s≤e, k∈K}.
A solution for a phrase recognition problem is a sety of phrases which iscoherentwith
respect to someconstraints. We consider two types of constraints: overlapping and em-
bedding. For the problem of recognizing sequentially organized phrases, often referred to
aschunking, phrases are not allowed to overlap or embed. Thus, the solution space can

be formally expressed asY = {y ⊆ P | ∀ ph1, ph2 ∈ y ph1 6∼ph2 ∧ ph1 6≺ph2} . More
generally, for the problem of recognizing phrases organized hierarchically, a solution is a
set of phrases which do not overlap but may be embedded. Formally, the solution space is
Y = {y ⊆ P | ∀ ph1, ph2∈y ph16∼ph2} .

In order to evaluate a phrase recognition system we use the standard measures for recog-
nition tasks:precision(p) —the ratio of recognized phrases that are correct—,recall (r)
—the ratio of correct phrases that are recognized— and their harmonic meanF1 = 2pr

p+r .

2.2 Recognizing Phrases

The mechanism to recognize phrases is described here as a function which, given a sentence
x, identifies the set of phrasesy of x: R : X → Y. We assume two components within this
function, both being learning components of the recognizer. First, we assume a functionP
which, given a sentencex, identifies a set of candidate phrases, not necessarily coherent,
for the sentence,P(x) ⊆ P. Second, we assume ascore function which, given a phrase,
produces a real-valued prediction indicating the plausability of the phrase for the sentence.

The phrase recognizer is a function which searches a coherent phrase set for a sentencex
according to the following optimality criterion:

R(x) = arg max
y⊆P(x) | y∈Y

∑
(s,e)k∈y

score((s, e)k, x, y) (1)

That is, among all the coherent subsets of candidate phrases, the optimal solution is defined
as the one whose phrases maximize the summation of phrase scores.

The functionP is only used to reduce the search space of theR function. Note that the
R function constructs the optimal phrase set by evaluating scores of phrase candidates,
and, regarding the length of the sentence, there is a quadratic number of possible phrases,
that is, the setP. Thus, considering straightforwardly all phrases inP would result in a
very expensive exploration. The functionP is intended to filter out phrase candidates from
P by applying decisions at word level. A simple setting for this function is astart-end
classification for each phrase type: each word of the sentence is tested ask-start —if it
is likely to start phrases of typek— and ask-end—if it is likely to end phrases typek.
Eachk-startwordxs with eachk-endwordxe, havings ≤ e, forms the phrase candidates
(s, e)k. Assumingstart andendbinary classification functions,hk

S andhk
E, for each type

k ∈ K, the filtering function is expressed as:

P(x) = { (s, e)k ∈ P | hk
S(xs) = +1 ∧ hk

E(xe) = +1 }

Alternatives to this setting may be to consider a single pair ofstart-endclassifiers, indepen-
dent of phrase types, or to perform a different tagging for identifying phrases, such as the
well-knownbegin-insideclassification. In general, each classifier will be applied to each
word in the sentence, and deciding the best strategy for identifying phrase candidates will
depend on the sparseness of phrases in a sentence, the length of phrases and the number of
categories.

Once the phrase candidates are identified, the optimal coherent phrase set is selected ac-
cording to (1). Due to its nature, there is no need to explicitly enumerate each possible
coherent phrase set, which would result in an exponential exploration. Instead, by guiding
the exploration through the problem constraints and using dynamic programming the op-
timal coherent phrase set can be found in polynomial time over the sentence length. For
chunking problems, the solution can be found in quadratic time by performing a Viterbi-
style exploration from left to right [4]. When embedding of phrases is allowed, a cubic-time
bottom-up exploration is required [6]. As noted above, in either cases there will be the ad-
ditional cost of applying a quadratic number of decisions for scoring phrases.

Summarizing, the phrase recognition system is performed in two layers: the identification
layer, which filters out phrase candidates in linear time, and the scoring layer, which selects
the optimal phrase chunking in quadratic or cubic time.

3 Additive Online Learning via Recognition Feedback

In this section we describe an online learning strategy for training the learning components
of the Phrase Recognizer, namely thestart-endclassifiers inP and thescorefunction. The
learning challenge consists in approximating the functions so as to maximize the globalF1

measure on the problem, taking into account that the functions interact. In particular, the
start-endfunctions define the actual input space of thescorefunction.

Each function is implemented using a linear separator,hw : Rn → R, operating in a
feature space defined by a feature representation function,φ : X → Rn, for some instance
spaceX . The functionP consists of two classifiers per phrase type: thestartclassifier (hkS)
and theendclassifier (hkE). Thus, theP function is formed by a prediction vector for each
classifier, noted aswk

S or wk
E, and a unique shared representation functionφw which maps a

word in context into a feature vector. A prediction is computed ashk
S(x) = wk

S ·φw(x), and
similarly for thehk

E, and the sign is taken as the binary classification. Thescorefunction
computes a real-valued score for a phrase candidate(s, e)k. We implement this function
with a prediction vectorwk for each typek ∈ K, and also a shared representation function
φp which maps a phrase into a feature vector. The score prediction is then given by the
expression:score((s, e)k, x, y) = wk · φp((s, e)k, x, y).

3.1 TheFR-PerceptronLearning Algorithm

We propose a mistake-driven online learning algorithm for training the parameter vectors
all together. We give the algorithm the name FR-Perceptron since it is a Perceptron-based
learning algorithm that approximates the prediction vectors inP as Filters of words, and the
score vectors as Rankers of phrases. The algorithm starts with all vectors initialized to0,
and then runs repeatedly in a number of epochsT through all the sentences in the training
set. Given a sentence, it predicts its optimal phrase solution as specified in (1) using the
current vectors. As in the traditional Perceptron algorithm, if the predicted phrase set is
not perfect the vectors responsible of the incorrect prediction are updated additively. The
algorithm is as follows:

• Input: {(x1, y1), . . . , (xm, ym)}, xi are sentences,yi are solutions inY
• Define:W = {wk

S, wk
E, wk|k ∈ K}.

• Initialize: ∀w ∈ W w = 0;

• for t = 1 . . . T , for i = 1 . . .m :

1. ŷ = RW (xi)
2. recognition learning feedback(W,xi, yi, ŷ)

• Output: the vectors inW .

We now describe the recognition-based learning feedback. By analyzing the dependencies
between each function and a solution, we derive a feedback rule which naturally fits the
phrase recognition setting. Lety∗ be the gold set of phrases for a sentencex, andŷ the set
predicted by theR function. LetgoldS(xi, k) andgoldE(xi, k) be, respectively, the perfect
indicator functions forstart andendboundaries of phrases of typek. That is, they return 1
if word xi starts/ends somek-phrase iny∗ and -1 otherwise. We differentiate three kinds
of phrases in order to give feedback to the functions being learned:

• Phrasescorrectly identified:∀(s, e)k ∈ y∗∩ŷ:

– Do nothing, since they are correct.

• Missed phrases:∀(s, e)k ∈ y∗\ŷ:

1. Update misclassified boundary words:
if (wk

S · φw(xs) ≤ 0) thenwk
S = wk

S + φw(xs)
if (wk

E · φw(xe) ≤ 0) thenwk
E = wk

E + φw(xe)
2. Update score function, if applied:

if (wk
S · φw(xs) > 0 ∧ wk

E · φw(xe) > 0) thenwk = wk + φp((s, e)k, x, y)

• Over-predicted phrases:∀(s, e)k ∈ ŷ\y∗:

1. Update score function: wk = wk − φp((s, e)k, x, y)
2. Update words misclassified as S or E:

if (goldS(xs, k) = −1) thenwk
S = wk

S − φw(xs)
if (goldE(xe, k) = −1) thenwk

E = wk
E − φw(xe)

This feedback models the interaction between the two layers of the recognition process.
Thestart-endlayer filters out phrase candidates for the scoring layer. Thus, misclassifying
the boundary words of a correct phrase blocks the generation of the candidate and pro-
duces a missed phrase. Therefore, we move thestart or endprediction vectors toward the
misclassified boundary words of a missed phrase. When an incorrect phrase is predicted,
we move away the prediction vectors from thestart or endwords, provided that they are
not boundary words of a phrase in the gold solution. Note that we deliberately do not care
about false positivesstart or endwords which do not finally over-produce a phrase.

Regarding the scoring layer, each category prediction vector is moved toward missed
phrases and moved away from over-predicted phrases. It is important to note that this
feedback operates only on the basis of the predicted solutionŷ, avoiding to make updates
for every prediction the function has made. Thus, the learning strategy is taking advantage
of the recognition process, and concentrates on (i) assigning high scores for the correct
phrases and (ii) making the incorrect competing phrases to score lower than the correct
ones. As a consequence, this feedback rule tends to approximate the desired behavior of
the globalR function, that is, to make the summation of the scores of the correct phrase
set maximal with respect to other phrase set candidates. This learning strategy is closely
related to other recent works on learning ranking functions [10, 8, 9].

A Note on the Convergence Assuming linear separability for eachstart, endandscore
function, it can be shown that (i) the mistakes of thestart-endfilters are bounded (applying
Novikoff’s proof); (ii) between two consecutive updates in thestart-endlayer, there is room
only for a finite number of updates of thescorefunction; and (iii) once thestart-endfilters
have converged, the correct solution is always considered in thescorelayer as candidate,
and in this state the overall learning process converges (applying the proof of Collins for a
perceptron tagger [10]).

4 Experiments on Clause Identification

Clause Identification is the problem of recognizing the clauses of a sentence. A clause can
be roughly defined as a phrase with a subject, possibly implicit, and a predicate. Clauses in
a sentence form a hierarchical structure which constitutes the skeleton of the full syntactic
tree. In the following example, the clauses are annotated with brackets:

((When (you don’t have any other option)), it is easy (to fight) .)

We followed the setting of the CoNLL-2001 competition1. The problem consists of rec-
ognizing the set of clauses on the basis of words, part-of-speech tags (PoS), and syntactic
base phrases (or chunks). There is only one category of phrases to be considered, namely
the clauses. The data consists of a training set (8,936 sentences, 24,841 clauses), a devel-
opment set (2,012 sentences, 5,418 clauses) and a test set (1,671 sentences, 5,225 clauses).

Representation Functions We now describe the representation functionsφw and φp,
which respectively map a word or a phrase and their local context into a feature vector in
{0, 1}n. Their design is inspired in our previous work [6]. For the functionφw(xi) we
capture the form, PoS and chunk tags of words in awindowaroundxi, that is, wordsxi+l

with l ∈ [−Lw,+Lw]. Each attribute type, together with each relative positionl and each
returned value forms a final binary indicator feature (for instance, “the word at position -2
is that” is a binary feature). Also, we consider the word decisions of the words to the left
of xi, that is, binary flags indicating whether the[−Lw,−1] words in the window are starts
and/or ends of a phrase. For the functionφp(s, e) we represent the context of the phrase
by capturing a[−Lp, 0] window of forms, PoS and chunks at thes word, and a separate
[0,+Lp] window at thee word. Furthermore, we represent the(s, e) phrase by evaluating
a pattern froms to e which captures the relevant elements in the sentence fragment from
words to worde 2. We experimentally set bothLw andLp to 3.

On this problem we were interested in comparing the FR-Perceptron algorithm versus other
alternative learning methods. The system to train was composed by thestart andendfunc-
tions which identify clause candidates, and a score function for clauses. As alternatives, we
first considered a batch classification setting, in which each function is trained separately
with binary classification loss. To do so, we generated three data sets from training exam-
ples, one for each function. For thestart-endsets, we considered an example for each word
in the data. To train thescoreclassifier, we generated only the phrase candidates formed
with all pairs of correct phrase boundaries. This latter generation greatly reduces the real
instance space in which the scoring function operates. The alternative of generating all pos-
sible phrases as examples would be more realistic, but infeasible for the learning algorithm
since it would produce 1,377,843 examples, with a 98.2% of negatives. As a secondary
intermediate approach, we considered a simple model which learns all the functions online
via binary classification loss. That is, the training sentences are visited online as in the
FR-Perceptron: first, thestart-endfunctions are applied to each word, and according to
their positive decisions, phrase examples are generated to train thescorefunction. In this
way, the input of thescorefunction is dynamically adapted to thestart-endbehavior, but a
classification feedback is given to each function for each decision taken.

The functions of the system were actually modeled asVoted Perceptrons[11], which com-
pute a prediction as anaverageof all vectors generated during training. For the batch
classification setting, we modeled the functions as Voted Perceptrons and also as SVMs3.
In all cases, a function can be expressed in dual form as a combination of training instances,
which allows the use of kernel functions. We work with polynomial kernels of degree 2.4

We trained the perceptron models for up to 20 epochs via the FR-Perceptron algorithm and
via classification feedback, either online (CO-VP) or batch (CB-VP). We also trained SVM
classifiers (Cl-SVM), adjusting the soft marginC parameter on the development set.

1Dataand details at the CoNLL-2001 website:http://cnts.uia.ac.be/conll2001.
2The following elements are considered in a pattern: a) Punctuation marks and coordinate con-

junctions; b) The wordthat; c) Relative pronouns; d) Verb phrase chunks; and e) The top clauses
within the s to e fragment, already recognized through the bottom up search (a clause in a pattern
reduces all the elements within it into an atomic element).

3We used the SVMlight package available athttp://svmlight.joachims.org.
4Initial tests revealed poor performance for the linear case and no improvements for degrees> 2.

Figure 1: Performance on the development set with respect to the number of epochs. Top:
globalF1 (left) and precision/recall onstarts(right). Bottom: given thestart-endfilters,
upper bound on the globalF1 (left) and number of proposed phrase candidates (right).

76

78

80

82

84

86

88

90

0 5 10 15 20

gl
ob

al
 F

 M
ea

su
re

FR-Perceptron
CO-VP
CB-VP

SVM
50

55

60

65

70

75

80

85

90

95

100

0 5 10 15 20

P
re

ci
si

on
/R

ec
al

l o
n

S
ta

rt
 W

or
ds

precision FR-Perceptron
recall FR-Perceptron

precision CO-VP
recall CO-VP

88

89

90

91

92

93

94

95

96

97

0 5 10 15 20

gl
ob

al
 F

 u
pp

er
 b

ou
nd

FR-Perceptron
CO-VP
CB-VP

SVM
5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20
P

 -
 n

um
be

r
of

 p
hr

as
e

ca
nd

id
at

es

FR-Perceptron
CO-VP
CB-VP

SVM

number of epochs number of epochs

Figure1 (top, left) shows the performance curves in terms of theF1 measure with respect
to the number of training epochs. Clearly, the FR-Perceptron model exhibits a much better
curve than classification models, being at any epoch more than 2 points higher than the
online model, and far from the batch models. To get an idea of how the learning strategy
behaves, it is interesting to look at the other plots of Figure 1. The top right plot shows the
performance of thestart function. The FR-Perceptron model exhibits the desirable filtering
behavior for this local decision, which consists in maintaining a very high recall (so that no
correct candidates are blocked) while increasing the precision during epochs. In contrast,
the CO-VP model concentrates mainly on the precision. The same behavior is observed for
the other classification models, and also for theendlocal decision. Thestart-endbehavior
is also shown from a global point of view at the bottom plots. The left plot shows the
maximum achievable globalF1, assuming a perfect scorer, given the phrases proposed by
thestart-endfunctions. Additionally, the right plot depicts the filtering capabilities in terms
of the number of phrase candidates produced, out of a total number of 300,511 possible
phrases. The FR-Perceptron behavior in the filtering layer is clear: while it maintains a
high recall on identifying correct phrases (above 95%), it substantially reduces the number
of phrase candidates to explore in the scoring layer, and thus, it progressively simplifies the
input to thescorefunction. Far from this behavior, the classification-based models are not
sensitive to the global performance in the filtering layer and, although they aggressively
reduce the search space, provide only a moderate upper bound on the globalF1.

Table 4 shows the performance of each model, together with the results of our previous
system [6], which held the best results on the problem. There, the same decisions were
learned by AdaBoost classifiers working in a richer feature space. Also, the score function
was a robust combination of several classifiers. These were trained taking into account the
errors of the start-end classifiers, which required a tuning procedure to select the amount
of introduced errors. Our new approach is much simpler to learn, since the interaction
between functions is naturally ruled by the recognition feedback. Looking at results, we
substantially improve the globalF1.

development test
T prec. recall Fβ=1 prec. recall Fβ=1

CB-VP 8 83.84 80.55 82.16 82.22 78.09 80.10
SVM - 84.31 82.83 83.57 83.19 80.00 81.57
CO-VP 19 91.06 80.62 85.52 89.25 77.62 83.03
FR-Perceptron 20 90.56 85.73 88.08 88.17 82.10 85.03
AdaBoost [6] – 92.53 82.48 87.22 90.18 78.11 83.71

Table 1: Results of Clause Identification on the CoNLL-2001 development and test sets.
TheT column shows the optimal number of epochs on the development set.

5 Conclusion

We have presented a global learning strategy for the general problem of recognizing struc-
tures of phrases, in which, typically, several different learning functions interact to explore
and recognize the structure. The effectiveness of our method has been empirically proved
in the problem of clause identification, where we have shown that a considerable improve-
ment can be obtained by exploiting high-order global dependencies in learning, in contrast
to concentrating only on the local subproblems. These results suggest to scale up global
learning strategies to more complex problems found in the natural language area (such as
full parsing or machine translation), or other structured domains.

Acknowledgements

Research partially funded by the European Commission (Meaning, IST-2001-34460) and
the Spanish Research Department (Hermes, TIC2000-0335-C03-02; Petra, TIC2000-1735-
C02-02). Xavier Carreras is supported by a grant from the Catalan Research Department.

References

[1] E. F. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLL-2000 Shared Task: Chunk-
ing. In Proc. of CoNLL-2000 and LLL-2000, 2000.

[2] Erik F. Tjong Kim Sang and Herv́e Déjean. Introduction to the CoNLL-2001 Shared Task:
Clause Identification. InProc. of CoNLL-2001, 2001.

[3] A. Ratnaparkhi. Learning to Parse Natural Language with Maximum-Entropy Models.Machine
Learning, 34(1):151–175, 1999.

[4] V. Punyakanok and D. Roth. The Use of Classifiers in Sequential Inference. InAdvances in
Neural Information Processing Systems 13 (NIPS’00), 2001.

[5] T. Kudo and Y. Matsumoto. Chunking with Support Vector Machines . InProc. of 2nd Con-
ference of the North American Chapter of the Association for Computational Linguistics, 2001.

[6] X. Carreras, L. M̀arquez, V. Punyakanok, and D. Roth. Learning and Inference for Clause
Identification. InProceedings of the 14th ECML, Helsinki, Finland, 2002.

[7] T. Kudo and Y. Matsumoto. Japanese Dependency Analyisis using Cascaded Chunking . In
Proc. of CoNLL-2002, 2002.

[8] K. Crammer and Y. Singer. A Family of Additive Online Algorithms for Category Ranking.
Journal of Machine Learning Research, 3:1025–1058, 2003.

[9] S. Har-Peled, D. Roth, and D. Zimak. Constraint Classification for Multiclass Classification
and Ranking. InAdvances in Neural Information Processing Systems 15 (NIPS’02), 2003.

[10] M. Collins. Discriminative Training Methods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. InProceedings of the EMNLP’02, 2002.

[11] Y. Freund and R. E. Schapire. Large Margin Classification Using the Perceptron Algorithm.
Machine Learning, 37(3):277–296, 1999.

