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Abstract

We compute approximate analytical bootstrap averages for support vec-
tor classification using a combination of the replica method of statistical
physics and the TAP approach for approximate inference. We test our
method on a few datasets and compare it with exact averages obtained
by extensive Monte-Carlo sampling.

1 Introduction

The bootstrap method [1, 2] is a widely applicable approach to assess the expected qualities
of statistical estimators and predictors. Say, for example, in a supervised learning problem,
we are interested in measuring the expected error of our favorite prediction method on test
points 1 which are not contained in the training set D0. If we have no hold out data, we
can use the bootstrap approach to create artificial bootstrap data sets D by resampling with
replacement training data from the original set D0. Each data point is taken with equal
probability, i.e., some of the examples will appear several times in the bootstrap sample
and others not at all. A proxy for the true average test error can be obtained by retraining
the model on each bootstrap training set D, calculating the test error only on those points
which are not contained in D and finally averaging over all possible sets D.

While in general bootstrap averages can be approximated to any desired accuracy by the
Monte-Carlo method, by generating a large enough number of random samples, it is use-
ful to have also analytical approximations which avoid the time consuming retraining of
the model for each new sample. Existing analytical approximations (based on asymp-
totic techniques) such as the delta method and the saddle point method require usually
explicit analytical formulas for the estimators of the parameters for a trained model (see
e.g. [3]). These may not be easily obtained for more complex models in machine learn-
ing such as support vector machines (SVMs). Recently, we introduced a novel approach
for the approximate calculation of bootstrap averages [4] which avoids explicit formulas
for parameter estimates. Instead, we define statistical estimators and predictors implicitly

1The average is over the unknown distribution of training data sets.



as expectations with suitably defined pseudo-posterior Gibbs distributions over model pa-
rameters. Within this formulation, it becomes possible to perform averages over bootstrap
samples analytically using the so-called “replica trick” of statistical physics [5]. The latter
involves a specific analytic continuation of the original statistical model. After the aver-
age, we are left with a typically intractable inference problem for an effective Bayesian
probabilistic model. As a final step, we use techniques for approximate inference to treat
the probabilistic model. This combination of techniques allows us to obtain approximate
bootstrap averages by solving a set of nonlinear equations rather than by explicit sampling.

Our method has passed a first test successfully on the simple case of Gaussian process (GP)
regression, where explicit predictions are still cheaply computed. Also, since the original
model is a smooth probabilistic one, the success of approximate inference techniques may
be not too surprising. In this paper, we will address a more challenging problem, that of
the support vector machine. In this case, the connection to a probabilistic model (a type
of GP) can be only established by introducing a further parameter which must eventually
diverge to obtain the SVM predictor. In this limit, the probabilistic model is becoming
highly nonregular and approaches a deterministic model. Hence it is not clear a priori if
our framework would survive these delicate limiting manipulations and still be able to give
good approximate answers.

2 Hard Margin Support Vector Classifiers

The hard margin SVM is a classifier which predicts binary class labels y = sign[f̂D0
(x)] ∈

{−1, 1} for inputs x ∈ IRd based on a set of training points D0 = (z1, z2, . . . , zN ), where
zi = (xi, yi) (for details see [6]). The usually nonlinear activation function f̂D0

(x) (which
we will call “internal field”) is expressed as f̂D0

(x) =
∑N

i=1 yiαiK(x, xi), where K(x, x′)
is a positive definite kernel and the set of αi’s is computed from D0 by solving a certain
convex optimization problem.

For bootstrap problems, we fix the pool of training data D0, and consider the statistics
of vectors f̂D = (f̂D(x1), . . . , f̂D(xN )) at all inputs xi ∈ D0, when the predictor f̂ is
computed on randomly chosen subsets D of D0. Unfortunately, we do not have an explicit
analytical expression for f̂D, but it is obtained implicitly as the vector f = (f1, . . . , fN )
which solves the constraint optimization problem

Minimize
{

f
T
K

−1
f
}

with fiyi ≥ 1 for all i such that (xi, yi) ∈ D (1)

K is the kernel matrix with elements K(xi, xj).

3 Deriving Predictors from Gibbs Distributions

In this section, we will show how to obtain the SVM predictor f̂D formally as the expecta-
tion over a certain type of Gibbs distribution over possible f ’s in the form

f̂D = 〈f〉 =

∫

df f P [f |D] (2)

with respect to a density P [f |D] = 1
Z µ[f ] P (D|f) which is constructed from a suitable

prior distribution µ[f ], a certain type of “likelihood” P (D|f) and a normalizing partition
function

Z =

∫

df µ[f ] P (D|f) . (3)

Our general notation suggests that this principle will apply to a variety of estimators and
predictors of the MAP type.



To represent the SVM in this framework, we use a well established relation between SVM’s
and Gaussian process (GP) models (see e.g. [7, 8]). We choose the GP prior

µ[f ] =
1

√

(2π)Nβ−N det(K)
exp

(

−β

2
f
T
K

−1
f

)

. (4)

The pseudo-likelihood 2 is defined by

P (D|f) =
∏

j: zj∈D

P (zj |fj) =
∏

j: zj∈D

Θ(yjfj − 1) (5)

where Θ(u) = 1 for u > 0 and 0 otherwise. In the limit β → ∞, the measure P [f |D] ∝
µ[f ]P (D|f) obviously concentrates at the vector f̂ which solves Eq. (1).

4 Analytical Bootstrap Averages Using the Replica Trick

With the bootstrap method, we would like to compute average properties of the estimator
f̂D, Eq. (2), when datasets D are random subsamples of D0. An important class of such
averages are of the type of a generalization error ε which are expectations of loss functions
g(f̂D(xi);xi, yi) over test points i, i.e., those examples which are in D0 but not contained
in the bootstrap training set D. Hence, we define

ε
.
=

1

N

N
∑

i=1

ED

[

δsi,0 g(f̂D(xi);xi, yi)
]

ED [δsi,0]
(6)

where ED[· · · ] denotes the expectation over random bootstrap samples D which are created
from the original training set D0. Each sample D is represented by a vector of “occupation”
numbers s = (s1, . . . , sN ) where si is the number of times example zi appears in the set
D and

∑N
i=1 si = S. The Kronecker symbol, defined by δsi,0 = 1 for si = 0 and 0 else,

guarantees that only realizations of bootstrap training sets D contribute to Eq. (6) which
do not contain the test point. For fixed bootstrap sample size S, the distribution of si’s is
multinomial. It is simpler (and does not make a big difference when S is sufficiently large)
when we work with a Poisson distribution for the size of the set D with S as the mean
number of data points in the sample. Then we get the simpler, factorizing joint distribution

P (s) =

N
∏

i=1

( S
N )sie−S/N

si!
(7)

for the occupation numbers si. From Eq. (7) we get ED[δsi,0] = e−
S
N .

Since we can represent general loss functions g by their Taylor expansions in powers of
f̂D (or polynomial approximations in case of non-smooth losses) it is sufficient to consider
only monomials g(f̂D(x);x, y) = (f̂D(x))r for arbitrary r in the following and regain the
general case at the end by resumming the series. Using the definition of the estimator f̂D,
Eq. (2), the bootstrap expectation Eq. (6) can be rewritten as

ε(S) =
1

N

N
∑

i=1

ED

[

δsi,0 Z−r
∫

r
∏

a=1

{

dfa µ[fa] fa
i

∏N
j=1(P (zj |fa

j ))sj

}

]

ED [δsi,0]
. (8)

which involves r copies3, i.e. replicas f
1, . . . , f r of the parameter vector f . If the partition

functions Z in the numerator of Eq. (8) were raised to positive powers rather than negative

2It does not allow a full probabilistic interpretation [8].
3The superscripts should NOT be confused with powers of the variables.



ones, one could perform the bootstrap average over the distribution Eq. (7) analytically. To
enable such an analytical average over the vector s (which is the “quenched disorder” in
the language of statistical physics) one introduces the following “trick” extensively used in
statistical physics of amorphous systems [5]. We introduce the auxiliary quantity

εn(S) =
1

e−
S
N N

N
∑

i=1

ED



δsi,0 Zn−r

∫ r
∏

a=1







dfa µ[fa] fa
i

N
∏

j=1

(P (zj |fa
j ))sj









 (9)

for arbitrary real n, which allows to write

ε(S) = lim
n→0

εn(S). (10)

The advantage of this definition is that for integers n ≥ r, εn(S) can be represented in
terms of n replicas f

1, f2, . . . , fn of the original variable f for which an explicit average
over si’s is possible. At the end of all calculations an analytical continuation to arbitrary
real n and the limit n → 0 must be performed. For integer n ≥ r, we use the definition of
the partition function Eq. (3), exchange the expectation over datasets with the expectation
over f ’s and use the explicit form of the distribution Eq. (7) to perform the average over
bootstrap sets. The resulting expressions can be rewritten as 4

εn(S) =
Ξ
\i
n

N

N
∑

i=1

〈〈

r
∏

a=1

fa
i

〉〉

\i

, (11)

where 〈〈· · · 〉〉\i denotes an average with respect to the so called cavity distribution P\i for

replicated variables ~fi = (f1
i , . . . , fn

i ) defined by

P\i(~fi) ∝
1

Li(~fi)

∫ N
∏

j=1,j 6=i

d~fj P (~f1, . . . , ~fN ) . (12)

The joint distribution of replica variables P ( ~f1, . . . , ~fN ) ∝ ∏n
a=1 µ[fa]

∏N
j=1 Lj(~fj) is

defined by the new likelihoods

Lj(~fj) = exp

[

− S

N

(

1 −
n
∏

a=1

P (zj |fa
j )

)]

. (13)

5 TAP Approximation

We have mapped the original bootstrap problem to an inference problem for an effective
Bayesian probabilistic model (the hidden variables have the dimensionality N × n) for
which we have to find a tractable approximation which allows analytical continuation of
n → 0 and β → ∞. We use the adaptive TAP approach of Opper and Winther [9] which
is often found to give more accurate results than, e.g., a simple mean field or a variational
Gaussian approximation. The ADATAP approach replaces the analytically intractable cav-
ity distribution Eq. (12) by a Gaussian distribution. In our case this can be written as

P\i(~fi) ∝ e−
1

2
~fT

Λc(i)~f+γc(i)T ~f , (14)

where the parameters Λc and γc are computed selfconsistently from the dataset D0 by
solving a set of coupled nonlinear equations. Details are given in the appendix.

The form Eq. (14) allows a simple way of dealing with the parameters n and β. We uti-
lize the exchangeability of variables f 1

i , . . . , fn
i and assume replica symmetry and further

4P\i(~fi), Eq. (12), has the normalizing partition function Ξ
\i

n where Ξ
\i

n → 1 for n→ 0.



introduce an explicit scaling of all parameters with β. This scaling was found to make all
final expressions finite in the limit β → ∞. We set

Λab
c (i) = Λc(i) = β2λc(i) for a 6= b (15)

Λaa
c (i) = Λ0

c(i) = β2λ0
c(i) and γa

c (i) = βγc(i) for all a = 1, . . . , n .

We also assume that ∆λc(i)
.
= β−1(Λ0

c(i)−Λc(i)) remains finite for β → ∞. The ansatz
Eq. (15) keeps the number of adjustable parameters independent of n and allows to perform
the “replica limit” n → 0 and the “SVM-limit” β → ∞ in all equations analytically before
we start the final numerical parameter optimization.

Computing the expectation Eq. (11) with Eq. (14) and (15) and resumming the power series
over r yields the final theoretical expression for Eq. (6)

ε(S) =
1

N

N
∑

i=1

∫

dG(u) g

(

γc(i) + u
√

−λc(i)

∆λc(i)
;xi, yi

)

(16)

where dG(u) = du(2π)−
1

2 e−
u2

2 and g is an arbitrary loss function. With
g(f̂D(xi);xi, yi) = Θ(−yif̂D(xi)) we obtain the bootstrapped classification error

ε(S) =
1

N

N
∑

i=1

Φ

(

− yiγc(i)
√

−λc(i)

)

(17)

where Φ(x) =
∫ x

−∞
dG(u).

Besides the computation of generalization errors, we can use our method to quantify the
uncertainty of the SVM prediction at test points. This can be obtained by computing the
bootstrap distribution of the “internal fields” f̂D(xi) at a test input xi. This is obtained
from Eq. (16) by inserting g(f̂D(xi);xi, yi) = δ(f̂D(xi) − h) using the Dirac δ-function

ρi(h) =
∆λc(i)

√

−2πλc(i)
exp

(

− (h∆λc(i) − γc(i))
2

2(−λc(i))

)

, (18)

i.e., mc
i = γc(i)

∆λc(i)
and V c

ii = − λc(i)
(∆λc(i))2

are the predicted mean and variance of the internal

field. (The predicted posterior variance of the internal field is (β∆λc(i))
−1 and goes to zero

as β → ∞ indicating the transition to a deterministic model.) It is possible to extend the
result Eq. (18) to “real” test inputs x /∈ D0, which is of greater importance to applications.
This replaces ∆λc(i), γc(i), λc(i) by

∆λc(x) =

(

K(x, x) −
N
∑

i=1

K(x, xi)∆λ(i)Ti(x)

)−1

(19)

γc(x) = ∆λc(x)

N
∑

i=1

Ti(x)γ(i)

λc(x) = (∆λc(x))2
N
∑

i=1

(Ti(x))2λ(i)

with Ti(x) =
∑N

j=1 K(x, xj)(I + diag(∆λ)K)−1
ji . The parameters ∆λ(i), γ(i), λ(i) are

determined from D0 according to Eq. (22), (23).
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Figure 1: Left: Average bootstrapped generalization error for hard margin support vector
classification on different data sets (simulation: symbols, theory: lines). Right: Boot-
strapped distribution of the internal field for Sonar data at a test input x /∈ D0. Most
distributions are Gaussian-like and in good agreement with the theory Eq. (18). We show
an atypical case (simulation: histogram, theory line) which nevertheless predicts the rela-
tive weights for both class labels fairly well. The inset shows true versus estimated values
of the probability p(−1|x) for predicting label y = −1 .

6 Results for Bootstrap of Hard Margin Support Vector Classifiers

We determined the set of theoretical parameters by solving Eq. (21)-(23) for four bench-
mark data sets D0 [10] and different sample sizes S using a RBF kernel K(x, x′) =

exp(− 1
2

∑d
k=1 vk(xk − x′

k)2)) with individually customized hyperparameters vk. The left
panel of Fig.1 compares our theoretical results for the bootstrapped learning curves ob-
tained by Eq. (17) (lines) with results from Monte-Carlo simulations (symbols). The Gaus-
sian approximation of the cavity distribution is based on the assumption that the model
prediction at a training input is influenced by a sufficiently large number of neighboring
inputs. We expect it to work well for sufficiently broad kernel functions. This was the case
for the Crabs and Wisconsin data sets where our theory is very accurate. It predicts cor-
rectly the interesting non-monotonous learning curve for the Wisconsin data (inset Fig.1,
left). In comparison, the Sonar and Pima data sets were learnt with narrow RBF kernels.
Here, we see that the quality of the TAP approximation becomes less good. However, our
results provide still a reasonable estimate for the bootstrapped generalization error at sam-
ple size S = N . While for practical applications of estimating the “true” generalization
error using Efron’s 0.632 bootstrap estimator the case S = N is of main importance, it
is also interesting to discuss the limit of extreme oversampling S → ∞. Since the hard
margin SVM gains no additional information from the multiple presentation of the same
data point, in this limit all bootstrap sets D supply exactly the same information as the data
set D0 and the data average ED[. . . ] becomes trivial. Variances with respect to ED[. . . ]
go to zero. With Eq. (21)-(23), we can write the average prediction mi at input xi ∈ D0 as
mi =

∑N
j=1 yjαjK(xi, xj) with weights αj = ∆λ(j)∆λc(j)

∆λ(j)+∆λc(j)
(yjmj − yjm

c
j) and recover

for S → ∞ the Kuhn-Tucker conditions αi ≥ 0 and αiΘ(yimi−1) = 0. The bootstrapped
generalization error Eq. (17) is found to converge to the approximate leave-one-out error
of Opper and Winther [8]

lim
S→∞

ε(S) =
1

N

N
∑

i=1

Θ(−yim
c
i ) =

SV
∑

i

Θ

(

αi

[K−1
SV ]ii

− 1

)

(20)



where the weights αi are given by the SVM algorithm on D0 and KSV is the kernel matrix
on the set of SV’s. While the leave-one-out estimate is a non-smooth function of model
parameters, Efron’s 0.632 ε(N) bootstrap estimate [2] of the generalization error approxi-
mated within our theory results in a differentiable expression Eq. (17) which may be used
for kernel hyperparameter estimation. Preliminary results are promising.

The right panel of Fig. 1 shows results for the bootstrapped distribution of the internal field
on test inputs x /∈ D0. The data set D0 contained N = 188 Sonar data and the bootstrap
is at sample size S = N . We find that the true distribution is often very Gaussian-like and
well described by the theory Eq. (18). Figure 1 (right) shows a rare case where a bi-modal
distribution (histogram) is found. Nevertheless, the Gaussian (line) predicted by our theory
estimates the probability p(−1|x) of a negative output quite accurately in comparison to
the probability obtained from the simulation.

Both SVM training and the computation of our approximate SVM bootstrap requires the
running of iterative algorithms. We compared the time ttrain for training a single SVM
on each of the four benchmark data sets D0 with the time ttheo needed to solve our theory
for SVM bootstrap estimates on these data for S = N . For sufficiently broad kernels we
find ttrain ≥ ttheo and our theory is reliable. The exception are extremely narrow kernels.
For the latter (Pima example in Fig.1 (left)) we find ttheo > ttrain where our theory is still
faster to compute but less reliable than a good Monte-Carlo estimate of the bootstrap.

7 Outlook

Our experiments on SVMs show that the approximate replica bootstrap approach appears
to be highly robust to apply to models which only fit into our framework after some delicate
limiting process. The SVM is also an important application because the prediction for each
dataset requires the solution of a costly optimization problem. Experiments on benchmark
data showed that our theory is appreciably faster to compute than a good Monte-Carlo
estimate of the bootstrap and yields reliable results for kernels which are sufficiently broad.
It will be interesting to apply our approach to other kernel methods such as kernel PCA.
Since our method is based on a fairly general framework, we will also investigate if it can
be applied to models where the bootstrapped parameters have a more complicated structure
like, e.g., trees or hidden Markov models.
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Appendix: TAP Equations

The ADATAP approach computes the set of parameters Λc(i), γc(i) by constructing an

alternative set of tractable likelihoods L̂j(~f) = e−
1

2
~fT

Λ(j)~f+γ(j)T ~f defining an auxiliary
Gaussian joint distribution PG(~f1, . . . , ~fN ) ∝ ∏n

a=1 µ(fa)
∏N

j=1 L̂j(~fj). We use replica
symmetry and a specific scaling of the parameters with β: γa(j) = βγ(j), Λ

aa(j) =

Λ0(j) = β2λ0(j) for all a, Λab(j) = Λ(j) = β2λ(j) for a 6= b and ∆λ(j) = β−1(Λ0(j)−
Λ(j)). All unknown parameters are found by moment matching: We assume that the first
two marginal moments mi = lim

n→0
〈〈fa

i 〉〉, Vii = lim
n→0

〈〈fa
i f b

i 〉〉−(mi)
2, χii = β lim

n→0
〈〈fa

i fa
i −

fa
i f b

i 〉〉 of the variables ~fi can be computed 1) by marginalizing PG and 2) by using the



relations between cavity distribution and marginal distributions P ( ~fi) ∝ Li(~fi)P\i(~fi) as

well as PG(~fi) ∝ L̂i(~fi)P\i(~fi) for all i = 1, . . . , N . This yields

χii = χc
ii

(

1 − (1 − e−
S
N )Φ(∆c

i )
)

(21)

mi = mc
i

(

1 − (1 − e−
S
N )Φ(∆c

i )
)

+ yi(1 − e−
S
N )

(

Φ(∆c
i ) +

√

V c
ii√

2π
e−

1

2
(∆c

i )
2

)

Vii = V c
ii

(

1 − (1 − e−
S
N )Φ(∆c

i )
)

+ (1 − yimi)(yimi − yim
c
i )

where mc
i = γc(i)

∆λc(i)
, V c

ii = − λc(i)
(∆λc(i))2

, χc
ii = 1

∆λc(i)
and ∆c

i =
1−yim

c
i√

V c
ii

. Further

χii = (G)ii (22)

mi = (G γ)i

Vii = − (G diag(λ) G)ii

with the N × N matrix G = (K−1 + diag(∆λ))−1 and

χii =
1

∆λ(i) + ∆λc(i)
(23)

mi =
γ(i) + γc(i)

∆λ(i) + ∆λc(i)

Vii = − λ(i) + λc(i)

(∆λ(i) + ∆λc(i))2

We solve Eq. (21)-(23) by iteration using Eqs. (21) and (22) to evaluate the moments
{mi, Vii, χii} and Eq. (23) to update the sets of parameters {γc(i),∆λc(i), λc(i)} and
{γ(i),∆λ(i), λ(i)}, respectively. Reasonable start values are ∆λ(i) = ∆λ, λ(i) = −∆λ,
γ(i) = yi∆λ where ∆λ is obtained as the root of 0 = 1 − 1

N

∑N
i=1

ωi∆λ
1+ωi∆λ − (1 − (1 −

e−S/N )Φ(∆c)) with ∆c = −0.5 and ωi are the eigenvalues of kernel matrix K.
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