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Abstract

We present a connectionist architecture that can learn a model of the
relationsbetween perceptions and actions and use this model for be-
havior planning. State representations are learned with a growing self-
organizing layer which is directly coupled to a perception and a motor
layer. Knowledge about possible state transitions is encoded in the lat-
eral connectivity. Motor signals modulate this lateral connectivity and

a dynamic field on the layer organizes a planning process. All mecha-
nisms are local and adaptation is based on Hebbian ideas. The model is
continuous in the action, perception, and time domain.

1 Introduction

Planning of behavior requires some knowledge about the consequences of actions in a
given environment. Avorld modelcaptures such knowledge. There is clear evidence that
nervous systems use such internal models to perform predictive motor control, imagery,
inference, and planning in a way that involves a simulation of actions and their perceptual
implications [1, 2]. However, the level of abstraction, the representation, on which such
simulation occurs is hardly the level of physical coordinates. A tempting hypothesis is
that the representations the brain uses for reasoning and planning are particularly designed
(by adaptation or evolution) fqust this purpose. To address such ideas we first need

a basic model for how a connectionist architecture can encode a world model and how
self-organization of inherent representations is possible.

In the field of machine learning, world models are a standard approach to handle behav-
ior organization problems (for a comparison of model-based approaches to the classical,
model-free Reinforcement Learning see, e.g., [3]). The basic idea of using neural networks
to model the environment was given in [4, 5]. Our approach feoanectionist world
model(CWM) is functionally similar to existing Machine Learning approaches with self-
organizing state space models [6, 7]. It is able to grow neural representations for different
world states and to learn the implications of actions in terms of state transitions. It differs
though from classical approaches in some crucial points:

e The model is continuous in the action, the perception, as well as the time domain.
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Figure 1: Schema of the CWM architecture.

¢ All mechanisms are based on local interactions. The adaptation mechanisms are largely
derived from the idea of Hebbian plasticity. E.g., the lateral connectivity, which encodes
knowledge about possible state transitions, is adapted by a variant of the temporal Hebb
rule and allows local adaptation of the world model to local world changes.

e The coupling to the motor system is fully integrated in the architecture via a mechanism
incorporatingmodulating synapses (comparable to shunting mechanisms).

e The two dynamic processes on the CWM, the “tracking” process estimating the current
stateand the planning process (similar to Dynamic Programming), will be realized by
activation dynamics on the architecture, incorporating in particular lateral interactions,
inspired by neural fields [8].

The outline of the paper is as follows: In the next section we describe our architecture,
the dynamics of activation and the couplings to perception and motor layers. In section 3
we introduce a dynamic process that generates, as an attractduesafieldover the layer

which is comparable to a state value function estimating the expected future return and al-
lows for goal-oriented behavior organization. The self-organization process and adaptation
mechanisms are described in section 4. We demonstrate the features of the model on a
maze problem in section 5 and finally discuss the results and the model in general terms.

2 The model

The core of theeonnectionist world mod€CWM) is a neural layer which is coupled to a
perceptual layer and a motor layer, see figure 1. Let us enumerate the units of the central
layer by: = 1,..,N. Lateral connections within the layer may exist and we denote a
connection from the-th to j-th unit by (ji). E.g., “Z(ﬁ)” means “summing over all
existing connectiong;j:)”. To every unit we associate an activatien € R which is
governed by the dynamics

T S.Cj = —$j+k5(Sj,S)+77 Zka(aﬁ,a) wji T, (1)
(4%)
which we will explain in detail in the following. First of ally; are the time-dependent
activations and the dot-notation & = F'(xz) means a time derivative which we algorith-
mically implemented by a Euler integration steft) = z(t — 1) + % F(z(t —1)).

Thefirst term in (1) induces an exponential relaxation while the second and third terms are
the inputs.k;(s;, s) is the forward excitation that unjtreceives from the perceptive layer.



Here,s; is the codebook vector (receptive field) of ugibnto the perception layer which
is compared to the current stimulsiwia the kernel functiork,. We will choose Gaussian
kernels as it is the case, e.g., for typical Radial Basis function networks.

Thethirdterm}_ ;) ka(aji, a) wj; z;, describes the lateral interaction on the central layer.

Namely, unitj receives lateral input from unitiff there exists a connectiofyi) from i to

j. This lateral input is weighted by the connection’s synaptic strength Additionally

there is another term enterimgultiplicativelyinto this lateral interactionLateral inputs

are modulated depending on the current motor activatidfe chose a modulation of the
following kind: To every existing connectiafj:) we associate a codebook vectgy onto

the motor layer which is compared to the current motor actizityia a Gaussian kernel
functionk,. Due to the multiplicative coupling, a connection contributes to lateral inputs
only when the current motor activity “matches” the codebook vector of this connection.
The modulation of information transmission by multiplicative or divisive interactions is a
fundamental principle in biological neural systems [9]. One example is shunting inhibi-
tion where inhibitory synapses attach to regions of the dentritic tree near to the soma and
thereby modulate the transmission of the dentritic input [10]. In our architecture, a shunt-
ing synapse, receiving input from the motor layer, might attach to only one branch of a
(lateral) dentritic tree and thereby multiplicatively modulate the lateral inputs summed up
at this subtree.

For the following it is helpful if we briefly discuss a certain relation between equation (1)
and a classical probabilistic approach. Let us assume normalized kernel functions

1 —(sj —s)? 1 —(a;; —a)?
ks j - 1 ka ii - 1
(sj,s) Tor o exp 207 , (aji,a) Toron exp 207

Thesekernel functions can directly be interpreted as probabilities(s;, s) represents
the probability P(s|j) that the stimulus is if j is active, andk,(a;;,a) the probability
P(a|j, 1) that the action i if a transition: — j occurred. As for typical hidden Markov
models we may derive tharior probability distributionP(j|a), given the action:

P(alj, i) P(jli) _ P(jli)
Pafy @0 pafy) -
P(jli
PUla) = 3 kol .
P(ali) canbe computed by normalizing (a|j, i) P(j|i) over;j such thad . P(jla,i) =
1. What we would like to point out here is that in equation (1), the lateral input
> (i) kalaji, @) wj; ; can be compared to the pridt(jja) under the assumption that
x; is proportional toP (i) and if we have an adaptation mechanism dgr which con-
verges to a value proportional t&(j|i) and which also ensures normalization, i.e.,
>_jka(aji,a) wj; = 1 forall i anda. This insight will help to judge some details of
the next two section. The probabilistic interpretation can be further exploited, e.g., com-
paring the input of a unif (or, in the quasi-stationary case; itself) to theposteriorand

deriving theoretically grounded adaptation mechanisms. But this is not within the scope of
this paper.

P(jla,i) =

3 The dynamics of planning

To organize goal-oriented behavior we assume that, in parallel to the activation dynam-
ics (1), there exists a second dynamic process which can be motivated from classical ap-
proaches to Reinforcement Learning [11, 12]. RecalBbéman equation

Vi) = Yo lali) 3 PGl @) [rG) +7 V2 )] @



yielded by the expectatiori* (i) of the discounted future retu(t) = > o2, 7™ o(t7),

which yieldsR(t) = o(¢t+1) + v R(t+1), when situated in state Here,y is the discount
factor and we presumed that the received rewafds actually depend only on the state
and thus enter equation (2) only in terms of the reward funat{@h(we neglect here that
rewards may directly depend on the action). Behavior is described by a stochastic policy
m(al?), the probability of executing actionin statei. Knowing the property (2) oV * it is
straight-forward to define a recursion algorithm for an approximatiaf V* such that”
converges td’*. This recursion algorithm is calledlue Iterationand reads

7o AV (i) = =Va(i) + Y _mlali) 3 PGilisa) [r() + Va(i)] 3)

with a “reciprocal learning rate” or time constant Note that (2) is the fixed point equation
of (3).

The practical meaning of the state-value functioms that it quantifies how desirable and
promising it is to reach a state also accounting for future rewards to be expected. In
particular, if one knows the current staté is a simple and efficient rule of behavior to
choose that action that will lead to the neighbor stagewith maximalV (j) (the greedy
policy). In that sensey/ (i) provides a smooth gradient towards desirable goals. Note
though that direct Value Iteration presumes that the state and action spaces are known and
finite, and that the current state and the world maelgl|:, a) is known.

How can we transfer these classical ideas to our model? We suppose that the CWM is
given a goal stimulug from outside, i.e., it is given the command to reach a world state
that corresponds to the stimulgsThis stimulus inducesr@ward excitation; = k(s;, g)

for each unit. Now, besides the activations, we introduce another field over the CWM,
thevalue fieldv;, which is in analogy to the state-value functiBiti). The dynamics is

Ty Uz =—v;+7r;+ Y I?a)x(w_jt Uj) ) (4)
ji

and well comparable to (3): One difference is that estimates the “current-plus-
future” reward o(t) + vR(t) rather than the future reward only—in the upper no-
tation this corresponds to the value iteratiop AV, (i) = -V.(i) + r(i) +
>oam(ald) 325 P(jli,a) [v Vz(4)]. As it is commonly done for Value Iteration, we as-
sumedr to be the greedy policy. More precisely, we considered only that action (i.e., that
connectionj7)) that leads to the neighbor stagtevith maximal valuew;; v;. In effect, the
summations oved as well as ovey can be replaced by a maximization oygf). Finally

we replaced the probability factd?(j|:,a) by w;;—we will see in the next section how
wj; IS learned and what it will converge to.

In practice, the value field will relax quickly to its fixed point = r; + v max ;) (w;i v})

and stay there if the goal does not change and if the world model is not re-adapted (see the
experiments). The quasi-stationary value fieJdogether with the current (typically non-
stationary) activations; allow the system to generate a motor signal that guides towards
the goal. More precisely, the value fialddetermines for every unitthe “best” neighbor

unit k; = argmax; wj; v;. The output motor signal is then the activation average

a= Z T A, (5)

of the motor codebook vectoss;,; that have been learned for the corresponding connec-
tions. Hence, the information flow between the central layer and the motor system is in
both ways: In the “tracking” process as given by equation (1) the information flows from
the motor layer to the central layer: Motor signals activate the corresponding connections
and cause lateral, predictive excitations. In the action selection process as given by equa-
tion (5) the signals flow from the central layer back to the motor layer to induce the motor
activity that should turn predictions into reality.



Depending on the specific problem and the representation of motor commands on the motor
layer, a post-processing of the motor sigreale.g. a competition between contradictory
motor units, might be necessary. In our experiments we will have two motor units and will
always normalize the 2D vectarto unit length.

4 Self-organization and adaptation

The self-organization process of the central layer combines techniques from standard self-
organizing maps [13, 14] and their extensions w.r.t. growing representations [15, 16] and
the learning of temporal dependencies in lateral connections [17, 18]. The free variables
of a CWM subject to adaptation are (1) the number of neurons and the lateral connectivity
itself, (2) the codebook vectoss anda;; to the perceptive and motor layers, respectively,
and (3) the weightsv;; of the lateral connections. The adaptation mechanisms we pro-
pose are based on three general principles: (1) the addition of units for representation of
novel states (novelty (2) the fine tuning of the codebook vectors of units and connec-
tions (plasticity, and (3) the adaptation of lateral connections in favor of better prediction
performancefrediction).

Novelty. Mechanisms similar to those of FuzzyARTMAPs [15] or Growing Neural Gas
[16] account for the insertion of new units when novelty is detected. We detect novelty
in a straight-forward manner, namely when the difference between the actual perception
and the best matching unit becomes too large. To make this detection more robust, we
use a low-pass filter (leaky integrator). At a given time,die the best matching unit,

z = argmax; ;. For this unit we integrate the error measure

Te €y = —e, + (1 — ky(s2,8)) .

We normalizek,(s.,s) such that it equal$ in the perfect matching case when = s.
Whenever this error measure exceeds a threshold caliddnce e, > v, v € [0, 1], we
generate a new unjt with the codebook vector equal to the current perceptgns s,

and a connection from the last best matching tiitvith the codebook vector equal to the
current motor signala; .+ = a. The errors of both, the new and the old unit, are reset to
zero,e, < 0,¢e; = 0.

Plasticity. We use simple Hebbian plasticity to fine tune the representations of existing
units and connections. Over time, the receptive fields of units and connections become
more and more similar to the average stimuli that activated them. We use the update rules

Ts SZ:—SZ+S, Ta Ayt = —A,; T A,

with learning time constants, andr,.

Prediction and a temporal Hebb rule. Although perfect prediction is not the actual ob-
jective of the CWM, the predictive power is a measure of the correctness of the learned
world model and good predictive power is one-to-one with good behavior planning. The
first and simple mechanism to adapt the predictive power is to grow a new lateral connec-
tion between two successive best matching udisnd if it does not yet exist. The new
connection is initialized withw, ,; = 1 anda,+ = a. The second, more interesting mech-
anism addresses the adaptationgf based on new experiences and can be motivated as
follows: The temporal Hebb rule strengthens a synapse if the pre- and post-synaptic neu-
rons spike in sequence, depending on the inter-spike-interval, and is supposed to roughly
describe LTP and LTD (see, e.g.,[19]). In a population code model, this corresponds to a
measure of correlation between the pre-synaptic and the delayed post-synaptic activity. In
our case we additionally have to account for the action-dependence of a lateral connection.



We do so by considering the terky (a;;, a) x; instead of only the pre-synaptic activity.

As a measure of temporal correlation we choose to relate this term wethetive i

of the post-synaptic unit instead of its delayed activation—this saves us from specifying
an ad-hoc “typical” delay and directly reflects that, in equation (1), lateral inputs relate to
the derivative ofz;. Hence, we consider the produtt k,(a;;,a) =; as the measure of
correlation. Our concrete implementation is a robust version of this idea:

Tw U)JL = Kj; [Cji — Wj; Hji] R where
T éji = —cj; + .Z‘J ka(aj,»,a) T, Tk Klﬂ = —Kj; + ka(aj,»,a) X .
Here, ¢;; and x;; are simply low-pass filters of; k,(a;;,a) z; and of k,(a;;, a) z;.
The termw;; k;; ensures convergence (assuming quasi statiandr ;) of w;; towards

cji//-cji. The time scale of adaptation is modulated by the recent actiyjtgf the connec-
tion.

5 Experiments

To demonstrate the functionality of the CWM we consider a simple maze problem. The
parameters we used are

Te n 20 ? 20 3 Ty vy Te Ts Ta Tw Tk
2 01 001 05 2 08 10 20 5 10 100

Figure2a displays the geometry of the maze. The “agent” is allowed to move continuously
in this maze. The motor signal is 2-dimensional and encodes the fbriceg- and y-
directions; the agent has a momentum and friction according 0 0.2 (f — x). As a
stimulus, the CWM is given the 2D position

Figure 2a also displays the (lateral) topology of the central layer after 30 000 time steps of
self-organization, after which the system becomes quasi-stationary. The model is learned
from scratch, initialized with one random unit. During this first phase, behavior planning

is switched off and the maze is explored with a random walk that changes its direction only
with probability 0.1 at a time. In the illustration, the positions of the units correspond to
the codebook vectors that have been learned. The directedness and the codebook vectors
of the connections can not displayed.

After the self-organization phase we switched on behavior planning. A goal stimulus cor-
responding to a random position in the maze is given and changed every time the agent
reaches the goal. Generally, the agent has no problem finding a path to the goal. Figure 2b
already displays a more interesting example. The agent has reachelmhow seeks

for goal B. However, we blocked the trespass 1. Starting\ éhe agent moves normally

until it reaches the blockade. It stays there and moves slowly up an down in front of the
blockade for a while—this while is of the order of the low-pass filter time sgal®uring

this time, the lateral weights of the connections pointing to the left are depressed and after
about 150 time steps, this change of weights has enough influence on the value field dy-
namics (4) to let the agent chose the way around the bottom taBydagure 2c¢ displays

the next scene: Starting Bt the agent tries to reach gdalagain via the blockade 1 (the
previous adaptation depressed only the connections from right to left). Again, it reaches the
blockade, stays there for a while, and then takes the way around t€gbajures 2d and

2e repeat this experiment with blockade 2. Startin® athe agent reaches the blockade

2 and eventually chooses the way around to g@arhen, seeking for godf, the agent
reaches the blockade first from the left, thereafter from the bottom, then from the right,
then it tries from the bottom again, and finally learned that none of these paths are valid
anymore and chooses the way all around to godtigures 2f shows that, once the world
model has re-adapted to account for these blockades, the agent will not forget about them:
Here, moving fromG to H, it does not try to trespass block 2.
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Figure 2: The CWM on a maze problem: (a) the outcome of self-organization; (b-c) agent
movements from goal to B to C, here, the trespass 1 was blocked and requires readap-
tation of the world model; (d-f) agent movements that demonstrate adaptation to a second
blockade. Please see the text for more explanations.

The reader is encouraged to also refer to the movies of these experiments, deposited
at www.marc-toussaint.net/03-cwm/, which visualize much better the dynamics of self-
organization, the planning behavior, the dynamics of the value field, and the world model
readaptation.

6 Discussion

The goal of this research is an understanding of how neural systems may learn and represent
a world model that allows for the generation of goal-directed behavioral sequences. In our
approach for a connectionist world model a perceptual and a motor layer are coupled to self-
organize a model of the perceptual implications of motor activity. A dynamical value field

on the learned world model organizes behavior planning—a method in principle borrowed
from classical Value Iteration. A major feature of our model is its adaptability. The state
space model is developed in a self-organizing way and small world changes require only
little re-adaptation of the CWM. The system is continuous in the action, perception, and
time domain and all dynamics and adaptivity rely on local interactions only.

Future work will include the more rigorous probabilistic interpretations of CWMs which
we already indicated in section 2. Another, rather straight-forward extension will be to re-
place random-walk exploration by more directed, information seeking exploration methods
as they have already been developed for classical world models [20, 21].
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