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Abstract

We employ an efficient method using Bayesian and linear classifiers
for analyzing the dynamics of information in high-dimensional states of
generic cortical microcircuit models. It is shown that such recurrent cir-
cuits of spiking neurons have an inherent capability to carry out rapid
computations on complex spike patterns, merging information contained
in the order of spike arrival with previously acquired context information.

1 Introduction

Common analytical tools of computational complexity theory cannot be applied to re-
current circuits with complex dynamic components, such as biologically realistic neuron
models and dynamic synapses. In this article we explore the capability of information
theoretic concepts to throw light on emergent computations in recurrent circuit of spiking
neurons. This approach is attractive since it may potentially provide a solid mathematical
basis for understanding such computations. But it is methodologically difficult because of
systematic errors caused by under-sampling problems that are ubiquitous even in extensive
computer simulations of relatively small circuits. Previous work on these methodologi-
cal problems had focused on estimating the information in spike trains, i.e. temporally
extended protocols of the activity of one or a few neurons. In contrast to that this paper
addresses methods for estimating the information that is instantly available to a neuron that
has synaptic connections to a large number of neurons.

We will define the specific circuit model used for our study in section 2 (although the
methods that we apply appear to be useful for to a much wider class of analog and dig-
ital recurrent circuits). The combination of information theoretic methods with methods
from machine learning that we employ is discussed in section 3. The results of applica-
tions of these methods to the analysis of the distribution and dynamics of information in
a generic recurrent circuit of spiking neurons are presented in section 4. Applications of
these methods to the analysis of emergent computations are discussed in section 5.
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Figure 1: Input distribution used throughout the paper. Each input consists of 5 spike trains
of length 800 ms generated from 4 segments of length 200 ms each. A For each segment
2 templates 0 and 1 were generated randomly (Poisson spike trains with a frequency of
20 Hz). B The actual input spike trains were generated by choosing randomly for each
segment i, i = 1, . . . , 4, one of the two associated templates (si = 0 or si = 1), and then
generating a noisy version by moving each spike by an amount drawn from a Gaussian
distribution with mean 0 and SD 4 ms.

2 Our study case: A Generic Neural Microcircuit Model

As our study case for analyzing information in high-dimensional circuit states we used
a randomly connected circuit with sparse, primarily local connectivity consisting of 800
leaky integrate-and-fire (I&F) neurons, 20% of which were randomly chosen to be in-
hibitory. The 800 neurons of the circuit were arranged on two 20 × 20 layers L1 and L2.
Circuit inputs consisting of 5 spike trains were injected into a randomly chosen subset of
neurons in layer L1 (the connection probability was set to 0.25 for each of the 5 input
channels and each neuron in layer L1). We modeled the (short term) dynamics of synapses
according to the model proposed in [1], with the synaptic parameters U (use), D (time
constant for depression), F (time constant for facilitation) randomly chosen from Gaussian
distributions that model empirical data for such connections. Parameters of neurons and
synapses were chosen as in [2] to fit data from microcircuits in rat somatosensory cortex
(based on [3] and [1]).

Since neural microcircuits in the nervous system often receive salient input in the form of
spatio-temporal firing patterns (e.g. from arrays of sensory neurons, or from other brain
areas), we have concentrated on circuit inputs of this type. Such firing pattern could for ex-
ample represent visual information received during a saccade, or the neural representation
of a phoneme or syllable in auditory cortex. Information dynamics and emergent com-
putation in recurrent circuits of spiking neurons were investigated for input streams over
800 ms consisting of sequences of noisy versions of 4 of such firing patterns. We restricted
our analysis to the case where in each of the four 200 ms segments one of two template
patterns is possible, see Fig. 1. In the following we write si = 1 (si = 0) if a noisy version
of template 1 (0) is used in the i-th time segment of the circuit input.

Fig. 2 shows the response of a circuit of spiking neurons (drawn from the distribution
specified above) to the input stream exhibited in Fig. 1B. Each frame in Fig. 2 shows the
current firing activity of one layer of the circuit at a particular point t in time. Since in
such rather small circuit (compared for example with the estimated 105 neurons below a
mm2 of cortical surface) very few neurons fire at any given ms, we have replaced each
spike by a pulse whose amplitude decays exponentially with a time constant of 30 ms. This
models the impact of a spike on the membrane potential of a generic postsynaptic neuron.
The resulting vector r(t) = 〈r1(t), . . . , r800(t)〉 consisting of 800 analog values from the
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Figure 2: Snapshots of the first 400 components of the circuit state r(t) (corresponding to
the neurons in the layer L1) at various times t for the input shown at the bottom of fig. 1.
Black denotes high activity, white no activity. A spike at time ts ≤ t adds a value of
exp(−(t − ts)/(30ms)) to the corresponding component of the state r(t).

800 neurons in the circuit is exactly the “liquid state” of the circuit at time t in the context
of the abstract computational model introduced in [2]. In the subsequent sections we will
analyze the temporal dynamics of the information contained in these momentary circuit
states r(t).1

3 Methods for Analyzing the Information contained in Circuit States

The mutual information MI(X,R) between two random variables X and R can be defined
by MI(X,R) = H(X)−H(X|R), where H(X) = −

∑

x∈Range(X) p(x) log p(x) is the
entropy of X , and H(X|R) is the expected value (with regard to R) of the conditional
entropy of X given R, see e.g. [4]. It is well known that empirical estimates of the entropy
tend to underestimate the true entropy of a random variable (see e.g. [5, 6]). Hence in
situations where the true value of H(X) is known (as is typically the case in neuroscience
applications where X represents the stimulus, whose distribution is controlled by the ex-
perimentalist), the generic underestimate of H(X|R) yield a generic overestimate of the
mutual information MI(X,R) = H(X) − H(X|R) for finite sample sizes. This under-
sampling effect has been addressed in a number of studies (see e.g. [7], [8] and [9] and the
references therein), and has turned out to be a serious obstacle for a wide-spread application
of information theoretic methods to the analysis of neural computation. The seriousness of
this problem becomes obvious from results achieved for our study case of a generic neural
microcircuit shown in Fig. 3A. The dashed line shows the dependence of “raw” estimates
MIraw of the mutual information MI(s2, R) on the sample size2 N , which ranges here
from 103 to 2 · 105. The raw estimate of MI(s2, R) results from a direct application of the
definition of MI to the observed occupancy frequencies for a discrete set of bins3 , where
R consists here of just d = 5 or d = 10 components of the 800-dimensional circuit state
r(t) for t = 660 ms, and s2 is the bit encoded by the second input segment. For more
components d of the current circuit state r(t), e.g. for estimating the mutual information
MI(s2, R) between the preceding circuit input s2 and the current firing activity in a sub-
circuit consisting of d = 20 or more neurons, even sample sizes beyond 106 are likely to
severely overestimate this mutual information.

1One should note that these circuit states do not reflect the complete current state of the underlying
dynamical system, only those parts of the state of the dynamical system that are in principle “visible”
for neurons outside the circuit. The current values of the membrane potential of neurons in the circuit
and the current values of internal variables of dynamic synapses of the circuit are not visible in this
sense.

2In our case the sample size N refers to the number of computer simulations of the circuit response
to new drawings of circuit inputs, with new drawings of temporal jitter in the input spike trains and
initial conditions of the neurons in the circuit.

3 For direct estimates of the MI the analog value of each component of the circuit state r(t) has
to be divided into discrete bins. We first linearly transformed each component of r(t) such that it has
zeros mean and variance σ

2 = 1.0. The transformed components are then binned with a resolution
of ε = 0.5. This means that there are four bins in the range ±σ.
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Figure 3: Estimated mutual information depends on sample size. In all panels d denotes
the number of components of the circuit state r(t) at time t = 660 ms (or equivalently
the number of neurons considered). A Dependence of the “raw” estimate MIraw and two
corrected estimates MInaive and MIinfinity of the mutual information MI(s2, R) (see
text). B Lower bounds MI(s2, h(R)) for the mutual information obtained via classifiers h
which are trained to predict the actual value of s2 given the circuit state r(t). Results are
shown for a) an empirical Bayes classifier (discretization ε = 0.5, see footnote 3 and 5), b)
a linear classifier trained on the discrete (ε = 0.5) data and c) for a linear classifier trained
on the analog data (ε = 0). In the case of the Bayes classifier MI(s2, h(R)) was estimated
by employing a leave-one-out procedure (which is computationally efficient for a Bayes
classifier), whereas for the linear classifiers a test set of size 5 · 104 was used (hence no
results beyond a sample size of 1.5 · 105). C Same as B but for d = 10. D Estimates of the
entropies H(R) and H(R|X). The “raw” estimates are compared with the corresponding
Ma-bounds (see text). The filled triangle marks the sample size from which on the Ma-
bound is below the raw estimate. E Same as B but for MI(s3, h(R)). F Same as E but for
d = 10.

Several methods for correcting this bias towards overestimation of MI have been sug-
gested in the literature. In section 3.1 of [7] it is proposed to subtract one of two possible
bias correction terms Bnaive and Bfull from the raw estimate MIraw of the mutual in-
formation. The effect of subtracting Bnaive is shown for d = 5 components of r(t) in
Fig. 3A. This correction is too optimistic for these applications, since the corrected es-
timate MInaive = MIraw − Bnaive at small sample sizes (e.g. 104) is still substan-
tially larger than the raw estimate MIraw at large sample sizes (e.g. 105). The subtrac-
tion of the second proposed term Bfull is not applicable in our situation because it yields
forMIfull = MIraw − Bfull values lower than zero for all considered sample sizes. The
reason is, that Bfull is proportional to the quotient “number of possible response bins” / N
and the number of possible response bins is in the order of 3010 in this example. Another
way to correct MIraw is proposed in [10]. This approach is based on a series expansion of
MI in 1/N [6] and is effectively a method to get an empirical estimate MIinfinity of the
mutual information for infinite sample size (N → ∞). It can be seen in Fig. 3A that for



moderate sample sizes MIinfinity also yields too optimistic estimates for MI .

Another method for dealing with generic overestimates of MI has been proposed in [10].
This method it based on the equation MI(X,R) = H(R) − H(R|X) and compares the
raw estimates of H(R) and H(R|X) with the so-called Ma-bounds, and suggests to judge
raw estimates of H(R) and H(R|X), and hence raw estimates of MI(X,R) = H(R) −
H(R|X), as being trustworthy as soon as the sample size is so large that the corresponding
Ma-bounds (which are conjectured to be less affected by undersampling) assume values
below the raw estimates of H(R) and H(R|X). According to this criterion a sample size
of 9 · 103 would be sufficient in the case of 5-neuron subcircuits (i.e., d = 5 components of
r(t)), c.f. Fig. 3D.4 However, Fig. 3A shows that the raw estimate MIraw is still too high
for N = 9 · 103 since MIraw assumes a substantially smaller value at N = 2 · 105.

In view of this unreliability of – even corrected – estimates for the mutual information we
have employed standard methods from machine learning in order to derive lower bounds
for the MI (see for example [8] and [9] for references to preceding related work). This
method is computationally feasible and yields with not too large sample sizes reliable
lower bounds for the MI even for large numbers of components of the circuit state. In
fact, we will apply it in sections 4 and 5 even to the full 800-component circuit state
r(t). This method is quite simple. According to the data processing inequality [4] one
has MI(X,R) ≥ MI(X,h(R)) for any function h. Obviously MI(X,h(R)) is easier to
estimate than MI(X,R) if the dimension of h(R) is substantially lower than that of R,
especially if h(R) assumes just a few discrete values. Furthermore the difference between
MI(X,R) and MI(X,h(R)) is minimal if h(R) throws away only that information in R
that is not relevant for predicting the value of X . Hence it makes sense to use as h a predic-
tor or classifier that has been trained to predict the current value of X . Similar approaches
for estimating a lower bound were motivated by the idea of predicting the stimulus (X)
given the neural response (R) (see [8], [9] and the references therein). To get an unbiased
estimate for MI(X,h(R)) one has to make sure that MI(X,h(R)) is estimated on data
which have not been used for the training of h. To make the best use of the data one can al-
ternatively use cross-validation or even leave-one-out (see [11]) to estimate MI(X,h(R)).
Fig. 3B, 3C, 3E, and 3F show for 3 different predictors h how the resulting lower bounds
for the MI depend on the sample size N .

It is noteworthy that the lower bounds MI(X,h(R)) derived with the empirical Bayes
classifier5 increase significantly with the sample size6 and converge quite well to the upper
bounds MIraw(X,R). This reflects the fact that the estimated joint probability density
between X and R gets more and more accurate. Furthermore the computationally less
demanding7 use of linear classifiers h also yields significant lower bounds for MI(X,R),
especially if the true value of MI(X,R) is not too small. In our application this does
not even require high numerical precision, since a coarse binning (see footnote 3) of the
analog components of r(t) suffices, see Fig. 3 B,C,E,F. All estimates of MI(X,R) in

4These kind of results depend on a division of the space of circuit states into subspaces, which is
required for the calculation of the Ma-bound. In our case we have chosen the subspaces such that the
frequency counts of any two circuit states in the same subspace differ by at most 1.

5 The empirical Bayes classifier operates as follows: given observed (and discretized) d com-
ponents r

(d)(t) of the state r(t) it predicts the input which was observed most frequently for the
given state components r

(d)(t) (maximum a posterior classification, see e.g. [11]). If r
(d)(t) was

not observed so far a random guess about the input is made.
6In fact, in the limit N → ∞ the Bayes classifier is the optimal classifier for the discretized data

in the sense that it would yield the lowest classification error — and hence the highest lower bound
on mutual information — over all possible classifiers.

7In contrast to the Bayes classifier the linear classifiers (both for analog and discrete data) yield
already for relatively small sample sizes N good results which do not improve much with increasing
N .
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Figure 4: Information in subset of neurons. Shown are lower bounds for mutual information
MI(si, h(R)) obtained with a linear classifier h operating on d components of the circuit
state r(t). The numbers a× d to the right of each panel specify the number of components
d used by the linear classifier and for how many different choices a of such subsets of size
d the results are plotted in that panel.

the subsequent sections are lower bounds MI(X,h(R)) computed via linear classifiers h.
These types of lower bounds for MI(X,R) are of particular interest from the point of
view of neural computation, since a linear classifier can in principle be approximated by a
neuron that is trained (for example by a suitable variation of the perceptron learning rule)
to extract information about X from the current circuit state R. Hence a high value of a
lower bound MI(X,h(R)) for such h shows not only that information about X is present
in the current circuit state R, but also that this information is in principle accessible for
other neurons.

4 Distribution and Dynamics of Information in Circuit States

We have applied the method of estimating lower bounds for mutual information via linear
classifiers described in the preceding section to analyze the spatial distribution and tem-
poral dynamics of information for our study case described in section 2. Fig. 4 shows the
temporal dynamics of information (estimated every 20ms as described in section 3) about
input bits si (encoded as described in section 2) for different components of the circuit state
r(t) corresponding to different randomly drawn subsets of neurons in the circuit. One sees
that even subsets of just 5 neurons absorb substantial information about the input bits si,
however with a rather slow onset of the information uptake at the beginning of a segment
and little memory retention when this information is overwritten by the next input segment.
By merging the information from different subsets of neurons the uptake of new informa-
tion gets faster and the memory retention grows. Note that for large sets of neurons (160
and 800) the information about each input bit si jumps up to its maximal value right at the
beginning of the corresponding ith segment of the input trains.
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Figure 5: Emergent computations. A Dynamics of information about input bits as in the
bottom row of Fig. 4. H(s) denotes the entropy of a segment si (which is 1 bit for i =
1, 2, 3, 4). B, C, D Lower bounds for the mutual information MI(f, h(R)) for various
Boolean functions f(s1, . . . , s4) obtained with a linear classifier h operating on the full
800-component circuit state R = r(t). H(f) denotes the entropy of a Boolean function
f(s1, . . . , s4) if the si are independently uniformly drawn from {0, 1}.

5 Emergent Computation in Recurrent Circuits of Spiking Neurons

In this section we apply the same method to analyze the mutual information between the
current circuit state and the target outputs of various computations on the information con-
tained in the sequence of spatio-temporal spike patterns in the input stream to the circuit.
This provides an interesting new method for analyzing neural computation, rather than just
neural communication and coding. There exist 16 different Boolean functions f(s1, s2)
that depend just on the first two of the 4 bits s1, . . . , s4. Fig. 5B,C shows that all these
Boolean functions f are autonomously computed by the circuit, in the sense that the cur-
rent circuit state contains high mutual information with the target output f(s1, s2) of this
function f . Furthermore the information about the result f(s1, s2) of this computation
can be extracted linearly from the current circuit state r(t) (in spite of the fact that the
computation of f(s1, s2) from the spike patterns in the input requires highly nonlinear
computational operations). This is shown in Fig. 5B and 5C for those 5 Boolean functions
of 2 variables that are nontrivial in the sense that their output really depends on both input
variables. There exist 5 other Boolean functions which are nontrivial in this sense, which
are just the negations of the 5 Boolean functions shown (and for which the mutual informa-
tion analysis therefore yields exactly the same result). In Fig. 5D corresponding results are
shown for parity functions that depend on three of the 4 bits s1, s2, s3, s4. These Boolean
functions are the most difficult ones to compute in the sense that knowledge of just 1 or 2
of their input bits does not give any advantage in guessing the output bit.

One noteworthy feature in all these emergent computations is that information about the
result of the computation is already present in the current circuit state long before the com-
plete spatio-temporal input patterns that encode the relevant input bits have been received
by the circuit. In fact, the computation of f(s1, s2) automatically just uses the temporal
order of the first spikes in the pattern encoding s2, and merges information contained in the
order of these spikes with the “context” defined by the preceding input pattern. In this way
the circuit automatically completes an ultra-rapid computation within just 20 ms of the be-
ginning of the second pattern s2. The existence of such ultra-rapid neural computations has
previously already been inferred [12] but models that could explain the possibility of such
ultra-rapid computations on the basis of generic models for recurrent neural microcircuits



have been missing.

6 Discussion
We have analyzed the dynamics of information in high-dimensional circuit states of a
generic neural microcircuit model. We have focused on that information which can be
extracted by a linear classifier (a linear classifier may be viewed as a coarse model for the
classification capability of a biological neuron). This approach also has the advantage that
significant lower bounds for the information content of high-dimensional circuit states can
already be achieved for relatively small sample sizes. Our results show that information
about current and preceding circuit inputs is spread throughout the circuit in a rather uni-
form manner. Furthermore our results show that a generic neural microcircuit model has
inherent capabilities to process new input in the context of other information that arrived
several hundred ms ago, and that information about the outputs of numerous potentially in-
teresting target functions automatically accumulates in the current circuit state. Such emer-
gent computation in circuits of spiking neurons is extremely fast, and therefore provides
an interesting alternative to models based on special-purpose constructions for explaining
empirically observed [12] ultra-rapid computations in neural systems.

The method for analyzing information contained in high-dimensional circuit states that we
have explored in this article for a generic neural microcircuit model should also be appli-
cable to biological data from multi-unit recordings, fMRI etc., since significant lower
bounds for mutual information were achieved in our study case already for sample sizes in
the range of a few hundred (see Fig. 3). In this way one could get insight into the dynamics
of information and emergent computations in biological neural systems.
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