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Abstract

A framework is introduced for assessing the encoding accuracy and
the discriminational ability of a population of neurons upon simul-
taneous presentation of multiple stimuli. Minimal square estima-
tion errors are obtained from a Fisher information analysis in an
abstract compound space comprising the features of all stimuli.
Even for the simplest case of linear superposition of responses and
Gaussian tuning, the symmetries in the compound space are very
different from those in the case of a single stimulus. The analysis
allows for a quantitative description of attentional effects and can
be extended to include neural nonlinearities such as nonclassical
receptive fields.

1 Introduction

An important issue in the Neurosciences is the investigation of the encoding proper-
ties of neural populations from their electrophysiological properties such as tuning
curves, background noise, and correlations in the firing. Many theoretical studies
have used estimation theory, in particular the measure of Fisher information, to ac-
count for the neural encoding accuracy with respect to the presentation of a single
stimulus (e. g., [1, 2, 3, 4, 5]).

Most modeling studies, however, neglect the fact that in a natural situation, neural
activity results from multiple objects or even complex sensory scenes. In particular,
attention experiments require the presentation of at least one distractor along with
the attended stimulus. Electrophysiological data are now available demonstrating
effects of selective attention on neural firing behavior in various cortical areas [6,
7, 8]. Such experiments require the development of theoretical tools which deviate
from the usual practice of considering only single stimuli in the analysis. Zemel
et al. [9] employ an extended encoding scheme for stimulus distributions and use
Bayesian decoding to account for the presentation of multiple objects. Similarly,
Bayesian estimation has been used in the context of attentional phenomena [10].
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In this paper, a new estimation-theoretic framework for the simultaneous presenta-
tion of multiple stimuli is introduced. Fisher information is employed to compute
lower bounds for the encoding error and the discrimational ability of neural popu-
lations independent of a particular estimator. Here we focus on the simultaneous
presentation of two objects in the context of attentional phenomena. Furthermore,
we assume a linearity in the neural response for reasons of analytical tractability;
however, the method can be extended to include neural nonlinearities.

2 Estimation Theory for Multiple Stimuli

2.1 Tuning Curves in Compound Space

The tuning curve f(X) of a neuron is defined to be the average neural response to
repetitive presentations of stimulus configurations X. In most cases, the response
is taken to be the number n(X) of action potentials occurring within some time
interval 7 after stimulus presentation, or the neural firing rate r(X) = n(X)/7:

(1)

Within an estimation-theoretic framework, the variability of the neural response is
described by a probability distribution conditioned on the value of X', P(n; X’). The
average () in (1) can be regarded either as an average over multiple presentations
of the same stimulus configuration (in an experimental setup), or as an average over
n (in a theoretical description).

In most electrophysiological experiments, tuning curves are assessed through the
presentation of a single stimulus, X = &, such as a bar or a grating characterized by
a single orientation, or a dot of light at a specific position in the animal’s visual field
(e.g., [11, 12]). Such tuning curves will be denoted by f1(Z), where the subscript
refers to the single object.

The behavior of a neuron upon presentation of multiple objects, however, cannot
be inferred from tuning curves f;(Z). Instead, neurons may show nonlinearities
such as the so-called non-classical receptive fields in the visual area V1 which have
attracted much attention in the recent past (e.g., [13, 14]). For M simultaneously
presented stimuli, X = Z1,..., T, the neuronal tuning curve can be written as a
function far(Z1,...,Zn), where the subscript M is not necessarily a parameter of
the function but an indicator of the number of stimuli it refers to. The domain of
this function will be called the compound space of the stimuli.

In the following, we consider a specific example consisting of two simultaneously
presented stimuli, characterized by a single physical property (such as orientation
or direction of movement). The resulting tuning function is therefore a function of
two scalar variables 1 and za: fa(z1,22) = (r(z1,22)) = (n(z1,z2))/7. Figure 1
visualizes the concept of the compound space.

In order to obtain an analytical access to the encoding properties of a neural pop-
ulation, we will furthermore assume that a neuron’s response fao(z1,22) is a linear
superposition of the single-stimulus responses fi(z1) and fi(x2), i.e.,

fa(z1,22) = kfi(z1) + (1 = k) f1(a2), (2)

where 0 < k < 1 is a factor which scales the relative importance of the two stimuli.
Such linear behavior has been observed in area 17 of the cat upon presentation
of bi-vectorial transparent motion stimuli [15] and in areas MT and MST of the
macaque monkey upon simultaneous presentation of two moving objects [16]. In
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Figure 1: The concept of compound space. A single-stimulus tuning curve f1(z)
(left) yields the average response to the presentation of either ' or x”; the simulta-
neous presentation of ' and =", however, can be formalized only through a tuning
curve fa(x1,x2) (right).

general, however, the compound space method is not restricted to linear neural
responses.

The consideration of a neural population in the compound space yields tuning
properties and symmetries which are very different from those in a D-dimensional
single-stimulus space considered in the literature (e.g., [2, 3, 4]). First, the tuning
curves have a different appearance. Figure 2a shows a tuning curve fo(z1, 22) given
by (2), where f1(z) is a Gaussian,

fl(x)—Fexp{—M}; 3)
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F is a gain factor which can be scaled to be the maximal firing rate of the neuron.
fa(z1,22) is not radially symmetric but has cross-shaped level curves. Second, a
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Figure 2: (a) A tuning curve fa(x1,22) in a 2-dimensional compound space given
by (2) and (3) with k = 0.5, c =5, 0 =03, F = 1. (b) Arrangement of tuning
curves: The centers of the tuning curves are restricted to the diagonal x1 = x2. The
cross s a schematic cross-section of the tuning curve in (a).

single-stimulus tuning curve f;(x) whose center is located at x = ¢ yields a linear
superposition whose center is given by the vector (c,c) in the compound space.
This is due to the fact that both axes describe the same physical stimulus feature.
Therefore, all tuning curve centers are restricted to the 1-dimensional subspace



1 = x2. The tuning curve centers are assumed to have a distribution in the
compound space which can be written as

- 0 if ¢ c
e ={ Jy KO (W

The geometrical features in the compound space suggest that an estimation-
theoretic approach will yield encoding properties of neural populations which are
different from those obtained from the presentation of a single stimulus.

2.2 Fisher Information

In order to assess the encoding accuracy of a neural population, the stochasticity
of the neural response is taken into account. For N neurons, it is formalized as the
probability of obtaining n(?) spikes in the i-th neuron (i=1...,N) as aresponse to
the stimulus configuration X', P(n™ n® ... n): xX) = P(7i; X). Here we assume
independent spike generation mechanisms in the neurons:

N
P(n(l),n(Q),...,n(N);X):Hp(n(i)§X)- (5)
i=1

These parameter-dependent distributions are obtained either experimentally or
through a noise model; a convenient choice for the latter is a Poisson distribution
with a spike count average given by the tuning curve (1) of each neuron.

In the 2-dimensional compound space discussed in the previous section, P(7i; X') =
P(ii;x1,22). The Fisher information is a 2 x 2 matrix J(z1,x2) = (Jij(z1,x2))
(1,7 € {1,2}), whose entries are given by
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The Cramér-Rao inequality states that a lower bound on the expected square es-
timation error of the ith feature, €7, (i=1,2), is given by (J~!);; provided that

the estimator is unbiased. In the following, this lower bound is studied in the
2-dimensional compound space.

3 Results

Single-neuron Fisher Information. The single-neuron Fisher information in
the compound space can be written down for an arbitrary noise model. Here we
choose a Poissonian spike distribution,

(Tfa(w1,29))" exp {7 fa(1,22)} )

n! ’

whereby the tuning is assumed to be linear according to (2), and the single-stimulus
tuning curve fi(x) is a Gaussian given by (3). A straightforward calculation yields
the single-neuron Fisher information matrix J¢(z1,z2) = (J5; (1, 22)) (i,j € {1,2})
given by

P(n;z1,x2) =
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the index c refers to the center (c,c) of the tuning curve.



Population Fisher Information. For independently spiking neurons (5), the
population Fisher information is the sum of the single-neuron Fisher information
values. Assuming some density 7(c) of tuning curve centers on the diagonal 1 = x3,
the population Fisher information is therefore obtained by an integration of (8).
Here we consider the simple case of a constant density, n(c) = no resulting in
elements Jj;(x1,z2) (2,7 € {1,2}) of the Fisher information maxtrix given by

Jij(Il,IQ):n/ij(:zrl,xg)dc. (9)

A symmetry with respect to the diagonal z1 = xo allows the replacement of the
two variable x1, x2 by a single variable p visualized in Fig. 3. It is straightforward

X2
+ +
()(17)(2')(17)(2) Figure 3: Transformation to the variable p
(—P) which is proportional to the distance of the
P point (x1,x2) to the diagonal. p therefore
(X,,%,) quantifies the similarity of the stimuli x1 and
ZIo.
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to obtain two additional symmetries, Ji2(p) = Jo1(p) and Ji1(p) = J11(—p). The
final population Fisher information is given by

Ji1(p) Ji2(p)
Te) = (J12(P) (125)2J11(P) )7 10)
whereby
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In the following, three examples will be discussed.

3.1 Example 1: Symmetrical Tuning

First we study the symmetrical case k = 1/2 the receptive fields of which are given
in Fig. 2a. Fig. 4 shows the minimal square estimation error for z, ef)min(p), as
obtained from the first diagonal element of the inverse Fisher information matrix.
Due to the symmetry, it is identical to the minimal square error for z2, €3 . (p).
The estimation error diverges as p — 0. This can be understood as follows: For
k = 1/2, the matrix (10) is symmetric and can be diagonalized. The eigenvector

directions are ) )
S 1 L -1
i-ys(1) e o

Correspondingly, the diagonal Fisher information matrix yields a lower bound for
the estimation errors of (z1 + z2)/v/2 and (2o — x1)/v/2, respectively. The results
are shown in Fig. 5. The estimation error for (z; + x2)/v/2 takes a finite value for
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Figure 4: Minimal square estimation error for
stimulus x1 or xo. Solid line: F = 1; dotted

. line: F = 1.5.In both cases, k = 0.5, 0 = 1,
/j L T=1n=1.
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Figure 5: Minimal square estimation error for (a) (z1 + 22)/v/2 and (b) (x9 —
xl)/\/i Solid lines: F = 1; dotted lines: F' = 1.5. Same parameters as in Fig. 4.

all o. However, the estimation error for (2 — 21)/+/2 diverges as p — 0. This
error corresponds to an estimation of the difference of the two presented stimuli.
As expected, a discrimination becomes impossible as the stimuli merge. The Fisher
information for (2o — 21)/v/2 can be regarded as a discrimination measure which
takes the simultaneous presentation of stimuli into account.

3.2 Example 2: Attention on Both Stimuli

Electrophysiological studies in V1 and V4 [7] and MT [8] of macaque monkeys
suggest that the gain but not the width of tuning curves is increased as stimuli in
a cell’s receptive field are attended. This can easily be incorporated in the current
model: The gain corresponds to the factor F in the tuning curve (3). Figures 4
and 5 compare the results obtained in the previous section (F = 1) with a maximal
firing rate F' = 1.5. As expected, the minimal square errors are smaller for higher
F' in all cases (dotted lines); a higher firing rate yields a better stimulus estimation.
This suggests that attention increases localization accuracy of x; and xo as well
as their discrimination if both stimuli are attended. The former is consistent with
psychophysical results on attentional enhancement of spatial resolution in human
subjects [17].

3.3 Example 3: Attending One Stimulus

The situation changes if only one of the two stimuli is attended. Electrophysiolog-
ical recordings in monkey area V4 suggest that upon presentation of two stimuli
inside a neuron’s receptive field, the influence of the attended stimulus increases
as compared to the unattended one [6]. In our framework, this situation can be
considered by increasing the weight factor of the attended stimulus in the linear



superposition (2). Here we study the case kK = 0.75 corresponding to attending
stimulus 1. The resulting tuning curve shows characteristic distortions as com-
pared to the symmetrical case k = 0.5 (Fig. 6a). The Fisher information analysis
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Figure 6: Neural encoding for one attended stimulus. (a) Tuning curve (2), (3) for
k = 0.75, i. e., stimulus x1 is attended. All other parameters as in Fig. 1a. (b)

Minimal square estimation errors for the direction (x2 — x1)/\/2 resulting from a
rotated Fisher information matriz. Solid line: k = 0.5 as in Fig. 5b; dotted line:
k=0.75. F =1, all other parameters as in Fig. 4.

reveals that the attended stimulus z; yields a smaller minimal square estimation
error than it does in the non-attention case £ = 0.5 whereas the minimal square
error for the unattended stimulus x5 is increased (data not shown). Figure 6b shows

the minimal square error for the difference of the stimuli, (z2 — 21)/v/2. The min-
imal estimation error becomes larger as compared to k£ = 0.5. This result can be
interpreted as follows: Attending stimulus z; yields a better encoding of z; but
a worse encoding of zo. The latter results in the larger estimation error for the
difference (x3 — 21)/v/2 of the stimulus values. This can be interpreted as a worse
discriminational ability: In a psychophysical experiment, subjects attending stim-
ulus z; will have only a crude representation of the unattended stimulus xo will
therefore yield a performance which is worse as compared to the situation where
both stimuli are processed in the same way. This is a prediction resulting from the
presented framework.

4 Summary and Discussion

A method was introduced to account for the encoding of multiple stimuli by popu-
lations of neurons. Estimation theory was performed in a compound space whose
axes are defined by the features of each stimulus. Here we studied a specific exam-
ple of linear neurons with Gaussian tuning and Poissonian spike statistics to gain
insight into the symmetries in the compound space and the interpretation of the
resulting estimation errors. The approach allows for a detailed consideration of at-
tention effects on the neural level [7, 8, 6]. The method can be extended to include
nonlinear neural behavior as multiple stimuli are presented; see e. g. [13, 14], where
the response of single neurons to two orientation stimuli cannot be easily inferred
from the neural behavior in the case of only one stimulus. More experimental and
theoretical work has to be done in order to account for the psychophysical perfor-
mance under the influence of attention as it has been measured, for example, in [17].
For this purpose, the presented approach has to be related to classical measures in



discrimination and same-different tasks. From theoretical considerations in the case
of a single stimulus [2, 3, 4, 5] it is well known that the encoding accuracy of a neu-
ral population may depend on various properties such as the number of encoded
features, the noise model, and the correlations in the neural activity. The influence
of such factors within the presented framework is currently under investigation.
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