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Abstract

A lot of learning machines with hidden variables used in infor-
mation science have singularities in their parameter spaces. At
singularities, the Fisher information matrix becomes degenerate,
resulting that the learning theory of regular statistical models does
not hold. Recently, it was proven that, if the true parameter is
contained in singularities, then the coefficient of the Bayes gen-
eralization error is equal to the pole of the zeta function of the
Kullback information. In this paper, under the condition that the
true parameter is almost but not contained in singularities, we
show two results. (1) If the dimension of the parameter from in-
puts to hidden units is not larger than three, then there exits a
region of true parameters where the generalization error is larger
than those of regular models, however, if otherwise, then for any
true parameter, the generalization error is smaller than those of
regular models. (2) The symmetry of the generalization error and
the training error does not hold in singular models in general.

1 Introduction

A lot of learning machines with hidden parts such as multi-layer perceptrons [8],
gaussian mixtures[2], Boltzman machines, and Bayesian networks with latent vari-
ables [4] are nonidentifiable statistical models. In such learning machines, the map-
ping from the parameter to the probability distribution is not one-to-one. Moreover,
they have complex singularities. In this paper, a parameter w of a parametric proba-
bility density function p(x|w) is called to be a singularity if and only if det I(w) = 0,



where I(w) is the Fisher information matrix at w. If a learning machine has singu-
larities, then neither the maximum likelihood estimator nor the Bayes a posteriori
distribution converges to the normal distribution in general [1][5].

Recently, despite of the mathematical difficulty of such learning machines, the
asymptotic Bayes generalization error has been clarified using algebraic geometrical
method [5][6]. The Bayes generalization error G(n), which is defined as the average
Kullback distance from the true distribution to the Bayes predictive distribution,
is equal to

G(n) =
λ

n
+ o(

1

n
)

where n is the number of training samples and (−λ) is the rational number that is
equal to the largest pole of the zeta function of the Kullback information and the
prior [6][7]. If the true parameter is not a singular point, then λ = d/2, where d
is the dimension of the parameter space, whereas, if the set of the true parameters
consists of singularities, then λ is different from d/2 [6][8].

In almost learning machines, singularities of the parameter space correspond to
smaller models contained in the parametric model. However, in practical applica-
tions, the true distribution is seldom contained completely in a finite model, and it
often happens that the true parameter is almost but not completely contained in
singularities.

In this paper, in order to clarify the effect of singularities when the true parameter
lies in the neighborhood of singularities, we propose a new scaling method by which
the Kullback distance from the singularities to the true distribution is equal to c/n,
where n is the number of training samples and c is a controlling parameter. This
scaling method, which is often used in comparing the powers of statistical hypothesis
testing algorithms, enables us to clarify the effect of singularities.

We show two results. (1) If the number of the parameters from inputs to hidden
units is not larger than three, then there exists c > 0 such that the generalization
error is larger than those of the corresponding regular model. However, if otherwise,
then for an arbitrary c ≥ 0, the generalization error is made to be smaller by the
singularities. (2) The symmetry of the generalization error and the training error
does not hold in nonidentifiable learning machines in general.

2 A Singular Model

Since singularities in learning machines with hidden variables have quite complex
geometrical structures in general, it needs the advanced method in modern algebraic
geometry to treat them in a general manner [6]. In this paper, we study a simple
hierarchical model. Even in this simple model, a universal phenomenon caused by
singularities can be found. Let us consider a learning problem:

Learner : p(y|x, a,b) =
1√
2π

exp(−1

2
(y − af(b, x))2), (1)

True : q(y|x) =
1√
2π

exp(−1

2
(y − a0√

n
f(b0,x))2), (2)

where y ∈ R1 is an output, x ∈ RM is an input with the probability distribution
q(x). The parameter space is defined by {(a,b) ∈ R1×RN}. The Kullback distance
from q(y|x) to p(y|x, a,b) is equal to (1/2n) a2

0Ex[f(b0,x)2], where Ex denotes the
expectation value over x. If f(0, x) ≡ 0, then an arbitrary point in {a = 0}∪{b = 0}
is a singularity. We assume that the a priori distribution ϕ(a,b) is a C1-class
function and ψ(b) ≡ ϕ(0,b) has a compact support.



Let Dn = {(xi, yi); i = 1, 2, · · · , n} be a set of training samples independently taken
from q(x)q(y|x). Both the Bayes a posteriori distribution p(a,b|Dn) and the Bayes
predictive distribution p(y|x, Dn) are respectively defined by

p(a,b|Dn) =
1

Cn
ϕ(a,b)

n
∏

i=1

p(yi|xi, a,b),

p(y|x, Dn) =

∫

p(y|x, a,b) p(a,b|Dn) da db,

where Cn is a normalizing constant. The generalization error G(n) and the training
error T (n) are respectively defined by

Generalization Error: G(n) = E
[

log
q(yn+1|xn+1)

p(yn+1|xn+1, Dn)

]

,

Training Error: T (n) = E
[ 1

n

n
∑

k=1

log
q(yk|xk)

p(yk|xk, Dn)

]

,

where E shows the expectation value over all sets of training samples Dn and the
testing samples (xn+1, yn+1). If the learning machine is a regular statistical model,
then both G(n) = d/(2n) + o(1/n) and T (n) = −d/(2n) + o(1/n) hold, where d is
the dimension of the parameter space, hence the coefficient d does not depend on
the true parameter. In this paper, we show that this property does not hold in a
singular learning machine.

We assume that the learning machine satisfies the condition

f(b, x) =

J
∑

j=1

fj(b)ej(x) (3)

where {ej(x)} is a set of orthonormal functions, Ex[ei(x)ej(x)] = δij .Then it follows
that ‖f(b)‖2 ≡

∑

j=1 fj(b)2 = Ex[f(b, x)2]. Then we have the following theorem.

Theorem 1 The Bayes generalization and training errors can be asymptotically
expanded as

G(n) =
λ(a0,b0)

2n
+ o(

1

n
),

T (n) =
µ(a0,b0)

2n
+ o(

1

n
).

Here λ(a0,b0) and µ(a0,b0) are constant functions of n defined by

λ(a0,b0) = 1 + a2
0‖f(b0)‖2 − Eg

[

J
∑

j=1

a0fj(b0)
1

Z(g)

∂Z

∂gj

]

µ(a0,b0) = λ(a0,b0) −Eg

[

J
∑

j=1

2gj
1

Z(g)

∂Z

∂gj

]

where g = (gj) is the J dimensional gaussian distribution whose average and the co-
variance matrix are respectively zero and the identity, and Eg shows the expectation
value over g, and

Z(g) =

∫

exp
[ 1

2 ‖f(b)‖2
{

J
∑

j=1

(gj + a0fj(b0))fj(b)}2
] ψ(b)

‖f(b)‖ db.



Proof of Theorem 1. We use the rescaling parameter α =
√
n a and define the

average < S(α,b) > of a function of S(α,b) by

< S(α,b) >=

∫

exp(−L(α,b)) S(α,b) ϕ(α/
√
n,b) dα db

∫

exp(−L(α,b)) ϕ(α/
√
n,b) dα db

where, we use notations d(α, b, x) = αf(b, x) − a0f(b0,x) and

L(α,b) =
1

n

n
∑

i=1

Li(α,b)

Li(α,b) =
1

2
d(α, b, xi)

2 −
√
n εi d(α, b, xi).

Here εi ≡ yi − a0f(b0, xi)/
√
n is a sample from the standard normal distribution.

The Bayes generalization and training errors are respectively equal to

G(n) = E
[

− log < exp{−Ln+1(α,b)

n
} >

]

T (n) = E
[

− 1

n

n
∑

k=1

log < exp{−Lk(α,b)

n
} >

]

.

When n→ ∞, the central limiting theorem ensures the convergences in probability
and in law respectively,

1

n

n
∑

i=1

ej(xi) ek(xi) → δjk ,
1√
n

n
∑

i=1

εi ej(xi) → gj,

where g = (gj) is subject to the normal distribution whose average and covariance
matrix are respectively equal to zero and the identity. Then by using log(1 − t) =
−t + t2/2 + o(t2) for small t, it follows that

lim
n→∞

2nG(n) =
J

∑

j=1

Eg

[

{ 1

Z

∂Z

∂gj
− a0fj(b0)}2

]

,

lim
n→∞

2nT (n) = lim
n→∞

2nG(n)− 2Eg

[

J
∑

j=1

gj
1

Z

∂Z

∂gj

]

,

where Eg shows the expectation value over the random variable g and

Z(g) =

∫

exp
[

−1

2

J
∑

j=1

α2fj(b)2 +

J
∑

j=1

αfj(b)(gj + a0fj(b0))
]

ψ(b) dα db.

By using the identity

{ 1

Z

∂Z

∂gj
}2 =

1

Z

∂2Z

∂g2
j

− ∂

∂gj
{ 1

Z

∂Z

∂gj
},

and Eg[(∂/∂gj)f(g)] = Eg[gjf(g)] for an arbitrary function f(g), we obtain Theo-
rem 1. (End of Proof: Theorem 1).

Theorem 1 shows that, if a0 = 0, then λ(a0,b0) = 1, which coincides with the
general theory for the case when the true parameter is contained in the singularities
[6]. In fact, if a0 = 0, the zeta function of the Kullback information

ζ(z) =

∫

a2z‖b‖2z ϕ(a, b) da db,

has the largest pole at z = −1/2. The new point of this paper is that the learning
coefficient λ(a0,b0) for a0 6= 0,b0 6= 0 is obtained. Unfortunately it can not be
represented by any simple function.



3 The Effect of Singularities

In order to study the effect of singularities, we adopt the simple learning machine,

af(b, x) =

N
∑

j=1

abjej(x) (4)

where a ∈ R1, b ∈ RN , x ∈ RM (N > 1). Also we assume that ψ(b) depends only
the norm ‖b‖, that is to say, ψ(b) can be rewritten as ψ(‖b‖). In this learning
machine, if the true regression function is y = 0, then the set of true parameters is
{(a,b); a = 0 or b = 0}.
Remark. By using the re-parameterization wi = abi, the learning machine eq.(4)
results in

p(y|x,w) =
1√
2π

exp(−1

2
(y −

N
∑

j=1

wjej(x)))2).

This learner is a regular statistical model, hence both G(n) = N/(2n) + o(1/n) and
T (n) = −N/(2n)+ o(1/n) hold. Therefore, by comparing λ(a0,b0) and −µ(a0,b0)
with N , let us clarify the effect of singularities.

Theorem 2 Let us consider the learning machine and the true distribution given
by eq.(1) and eq.(2), which are restricted as eq.(4). If N ≥ 2, then the Bayes
generalization and training errors are respectively given by

λ(a0,b0) = 1 +Eg

[

(a2
0‖b0‖2 + a0b0 · g)

YN (g)

YN−2(g)

]

(5)

µ(a0,b0) = 1 − 2N + Eg

[

(a2
0‖b0‖2 + 3a0b0 · g + 2‖g‖2)

YN (g)

YN−2(g)

]

(6)

where

YN(g) =

∫ π/2

0

dθ sinN θ exp(−1

2
‖a0b0 + g‖2 sin2 θ).

Proof of Theorem 2. We introduce the general polar coordinate b = (r,Ω). The
function Z(g) in Theorem 1 is given by

Z(g) =

∫

dr

∫

dΩ exp{ ((g + a0b0) · Ω)2

2
} ψ(r) rN−2.

Therefore Z(g) is independent of the direction of g+a0b0, we can assume g+a0b0 =
‖g + a0b0‖ × (1, 0, · · · , 0) without loss of generality. By representing Ω = b/r as

bi/r = sin θ1 · · · sin θi−1 cos θi (1 ≤ i ≤ N − 1),

bN/r = sin θ1 · · · sin θN−1 ,

we obtain

Z(g) = const.

∫ π/2

0

sinN−2 θ1 exp(
‖a0b0 + g‖2

2
cos2 θ1) dθ1.

which completes the proof. (End of Proof: Theorem 2).

Unfortunately, the function λ(a0,b0) in eq.(5) can not be represented by any clas-
sically analytic function. Figure 1 shows the value λ(a0,b0) given by eq.(5) by
numerical calculations, for the cases N = 2, 3, .., 6. The horizontal and longitu-
dinal lines respectively show |a0|‖b0‖ and λ(a0,b0)/N . The generalization error
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is smaller than that of the corresponding regular statistical model if and only if
λ(a0,b0)/N < 1.

For all cases 2 ≤ N ≤ 6, λ(a0,b0) converges to the dimension N when |a0|‖b0‖ →
∞. If N = 2 and N = 3, λ(a0,b0) becomes larger than N , if the true parameter
mismatches the singularities. WhenN = 2, in the region |a0|‖b0‖ > 2.8, λ(a0,b0) >
N . When N = 3, only in the interval 3.8 < |a0|‖b0‖ < 6.8, λ(a0,b0) > N .

On the other hand, if N ≥ 4, the learning coefficient λ(a0,b0) is always smaller than
N , even if the true parameter is not contained in singularities. If the dimension of
the parameter is large, then singularities make the Bayes generalization error smaller
than regular statistical models, independently of the place of the true parameter.

This result can be analyzed more precisely by the asymptotic expansion.



Theorem 3 The coefficients can be asymptotically expanded when |a0|‖b0‖ → ∞.

λ(a0,b0) = N − (N − 1)(N − 3)

a2
0‖b0‖2

+ o(
1

a2
0‖b0‖2

),

µ(a0,b0) = −N +
(N − 1)2

a2
0‖b0‖2

+ o(
1

a2
0‖b0‖2

).

In this theorem, a2
0‖b0‖2/2 is equal to the Kullback distance from the singularities

to the true distribution. It should be emphasized that the symmetrical relation
λ(a0,b0) + µ(a0,b0) = 0 does not hold near the singularities. In the generalization
error, the coefficient of 1/a2

0‖b0‖2 is positive if N = 2, whereas it is negative if
N ≥ 4. When N = 3, then the coefficient is equal to zero.

Proof of Theorem 3 The function YN(g) in Theorem 2 is rewritten as

YN (g) =
1

‖a0b0 + g‖2

∫ 1

0

xN

√

1 − x2

‖a0b0+g‖2

exp(−x
2

2
)dx

Then by using
1

√

1 − x2

‖a0b0+g‖2

∼= 1 +
x2

2‖a0b0 + g‖2
,

we have an asymptotic expansion,

λ(a0,b0) = 1 + Eg

[

(a2
0‖b0‖2 + a0b0 · g)

CN

‖a0b0 + g‖M+1
+

CN+2

2‖a0b0 + g‖M+3

CN−2

‖a0b0 + g‖M−1
+

CN

2‖a0b0 + g‖M+1

]

,

where CN = 2(N−1)/2Γ(N+1
2 ). The training error can be obtained by the same way.

(End of Proof: Theorem 3).

4 Discussion

Let us shortly discuss three points.

Firstly, in this paper, we compared a simple layered model with a regular statistical
model. If we employ a linear learner

y =

N
∑

j=1

bjej(x),

then we can expect the more precise statistical estimation by making it to be the
hierarchical model,

y =

N
∑

j=1

abjej(x),

if N ≥ 4 and Bayesian estimation is applied.

Secondly, the Bayesian model selection is usually carried out by minimizing the
stochastic complexities,

F (Dn) = − log

∫ n
∏

i=1

p(yi|xi, a,b)ϕ(a,b) dab. .



Let us consider the model selection problem, the model y = 0 or the model in
eq.(1). If the Kullback distance from the singularities to the true paramater is
equal to c/n and if n is sufficiently large, then for an arbitrary c, y = 0 is selected
with the probability one. Theoretically speaking, this fact shows that the minimum
stochastic complexity criterion is not equivalent to the minimum generalization error
criterion.

And lastly, we have shown that, if the true parameter is at the neighborhood of
singularities, then the symmetry of the generalization error and the training error
does not hold. Therefore the generalization error can not be estimated based on
the training error using the conventional method.

These three points are the important problems for future study.

5 Conclusion

Effect of singularities when the true parameter mismatches them is clarified. Sin-
gularities make the Bayes generalization error to be small if the dimension of the
inputs to hidden units is large. We expect that this research will be a base to clarify
the reason why neural information processing systems need hierarchical structures.

This work was supported by the Ministry of Education, Science, Sports, and Culture
in Japan, Grant-in-aid for scientific research 12680370.
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