
Real-Time Monitoring of Complex Industrial
Processes with Particle Filters

Rubén Morales-Menéndez
�

Dept. of Mechatronics and Automation
ITESM campus Monterrey

Monterrey, NL México
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Abstract

This paper discusses the application of particle filtering algorithms to
fault diagnosis in complex industrial processes. We consider two ubiq-
uitous processes: an industrial dryer and a level tank. For these appli-
cations, we compared three particle filtering variants: standard parti-
cle filtering, Rao-Blackwellised particle filtering and a version of Rao-
Blackwellised particle filtering that does one-step look-ahead to select
good sampling regions. We show that the overhead of the extra process-
ing per particle of the more sophisticated methods is more than compen-
sated by the decrease in error and variance.

1 Introduction

Real-time monitoring is important in many areas such as robot navigation or diagnosis
of complex systems [1, 2]. This paper considers online monitoring of complex industrial
processes. The processes have a number of discrete states, corresponding to different com-
binations of faults or regions of qualitatively different dynamics. The dynamics can be very
different based on the discrete states. Even if there are very few discrete states, exact moni-
toring is computationally unfeasible as the state of the system depends on the history of the
discrete states. However there is a need to monitor these systems in real time to determine
what faults could have occurred.

This paper investigates the feasibility of using particle filtering (PF) for online monitoring.
It also proposes some powerful variants of PF. These variants involve doing more computa-
tion per particle for each time step. We wanted to investigate whether we could do real-time
monitoring and whether the extra cost of the more sophisticated methods was worthwhile
in these real-world domains.

2 Classical approaches to fault diagnosis in dynamic systems

Most existing model-based fault diagnosis methods use a technique called analytical redun-
dancy [3]. Real measurements of a process variable are compared to analytically calculated
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values. The resulting differences, named residuals, are indicative of faults in the process.
Many of these methods rely on simplifications and heuristics [4, 5, 6, 7]. Here, we propose
a principled probabilistic approach to this problem.

3 Processes monitored

We analyzed two industrial processes: an industrial dryer and a level-tank. In each of these,
we physically inserted a sequence of faults into the system and made appropriate mea-
surements. The nonlinear models that we used in the stochastic simulation were obtained
through open-loop step responses for each discrete state [8]. The parametric identification
procedure was guided by the minimum squares error algorithm [9] and validated with the
“Control Station” software [10]. The discrete-time state space representation was obtained
by a standard procedure in control engineering [8].

3.1 Industrial dryer

An industrial dryer is a thermal process that converts electricity to heat. As shown in
Figure 1, we measure the temperature of the output air-flow.

Figure 1: Industrial dryer.

Normal operation corresponds to low fan speed, open air-flow grill and clean temperature
sensor (we denote this discrete state ����� �

). We induced 3 types of fault: ������� faulty
fan, � � �
	 faulty grill (the grill is closed), and � � �
� faulty fan and grill.

3.2 Level tank

Many continuous industrial processes need to control the amount of accumulated material
using level measurement, such as evaporators, distillation columns or boilers. We worked
with a level-tank system that exhibits the dynamic behaviour of these important processes,
see Figure 2. A by-pass pipe and two manual valves ( �� and ��� ) where used to induce
typical faulty states.

4 Mathematical model

We adopted the following jump Markov linear Gaussian model:

� ��� ��� � ��� � ������
� � � � � � ��� � ����! #"$� � ���&%'�� )(�� � ���&*+�
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Figure 2: Level-Tank

where , ��������� denotes the measurements, � �����	��
 denotes the unknown continuous
states, * � ��� is a known control signal, ��� � � � 4���54���� � denotes the unknown discrete
states (normal operations and faulty conditions). The noise processes are i.i.d Gaussian:
%'� ��� ��� 4�� � and 01� ��� ��� 4�� � . The parameters � � 4 " 4 - 4 . 4 ('4 3 4 ��� � � � � ������ � are
identified matrices with . � � ����./� � � ������� for any � � . The initial states are � � �!� �#" � 4%$ � �
and � � � ��� � � � . The important thing to notice is that for each realization of �1� , we have
a single linear-Gaussian model. If we knew ��� , we could solve for � � exactly using the
Kalman filter algorithm.

The aim of the analysis is to compute the marginal posterior distribution1 of the dis-
crete states � � � �'& � � ,  & � � . This distribution can be derived from the posterior distribution
� ��( � �'& � 4 � �)& � � ,  & � � by standard marginalisation. The posterior density satisfies the follow-
ing recursion

* � � �'& � 4 � �)& � � ,  & � � � * � � �'& ���� 4 � �'& ���2 � ,  & ���2 �
* � , ��� � �54 � ��� * � � � 4 � ��� � ���� 4 � ������* � , ��� ,  & ���2��  (1)

This recursion involves intractable integrals. One, therefore, has to resort to some form of
numerical approximation scheme.

5 Particle filtering

In the PF setting, we use a weighted set of samples (particles)
� � ��+-,/.�'& � 4 � +/,/.�)& � ��4 % +-,/.� �10,/2  to

approximate the posterior with the following point-mass distribution

3
� 0 ��(

�4�'& �54 � �'& ��� ,  & ��� � 05
,-2 

% +/,-.�76�8:9<;-=>@? A�B � 9<;-=>@? A ��( �4�'& �54 � �'& ����4

where 6 8 9C;/=>�? A B � 9C;/=>�? A �D( � �)& ��4 � �)& �&� denotes the Dirac-delta function. Given E parti-

cles
� �F+/,/.�)& ���� 4 � +/,-.�'& ���2 �10,/2  at time GIH �

, approximately distributed according to
1NOTATION: For a generic vector J , we adopt the notation JLK�M NFOIP#J1K%Q@J�R�Q%S�S%S%Q@J'NUTWV to denote all

the entries of this vector at time X . For simplicity, we use J�N to denote both the random variable and its
realisation. Consequently, we express continuous probability distributions using YZP\[LJ N T instead of]_^ P#J'Na`�[LJ'NDT and discrete distributions using YbP#J'NUT instead of

]_^ P#J'N_cdJ�NWT . If these distributions
admit densities with respect to an underlying measure e (counting or Lebesgue), we denote these
densities by fgP#J�NWT . For example, when considering the space hji , we will use the Lebesgue measure,
ekcl[LJ'N , so that YZP\[LJ�NWTFcmfgP#J'NUTL[LJ�N .



����( � +-,/.�'& ���� 4 � +/,-.�'& ���2 � ,  & ���2 � , PF enables us to compute E particles
� � +/,-.�'& � 4 � +/,-.�'& � � 0,-2  approxi-

mately distributed according to ����( � +/,/.�)& � 4 � +/,-.�'& � � ,  & � � , at time G . Since we cannot sample from
the posterior directly, the PF update is accomplished by introducing an appropriate impor-
tance proposal distribution

� ��( � �)& �54 � �'& ��� from which we can obtain samples. The basic
algorithm, Figure (3), consists of two steps: sequential importance sampling and selection
(see [11] for a detailed derivation). This algorithm uses the transition priors as proposal
distributions;

� � � �'& � 4 � �)& � � ,  & � � � ��� � � � � ���� 4 � � ����� � � � � ���2 � . For the selection step, we
used a state-of-the-art minimum variance resampling algorithm [12].

Sequential importance sampling step� For � c�� Q)SCSCS Q�� , sample from the transition priors� 	�
���N�� Y P 	 N�� 	�
���N�� K T and
�� 
���N�� Y P\[ � N�� � 
����N�� K Q 	�
���N T

and set � �� 
���� M N Q �	 
����� M N�� O�� �� 
���N Q � 	 
����N Q � 
���� M N�� K Q 	 
���� M N�� K � S� For � c�� Q)SCSCS Q�� , evaluate and normalize the importance weights! 
���N#" f �%$ N�� �� 
���N Q � 	 
���N �
Selection step� Multiply/Discard particles & �� 
����� M N Q � 	 
���� M N%')(��* K with respect to high/low importance

weights ! 
���N to obtain � particles & � 
���� M N Q 	 
���� M N ' (��* K .
Figure 3: PF algorithm at time G .

6 Improved Rao-Blackwellised particle filtering

By considering the factorisation * � � �'& � 4 � �)& � � ,  & � � � * � � �)& � � ,  & � 4 � �'& � � * � � �)& � � ,  & � � , it is
possible to design more efficient algorithms. The density * � � �'& ��� ,  & � 4 � �'& ��� is Gaussian
and can be computed analytically if we know the marginal posterior density * � � �)& �5� ,  & �&� .
This density satisfies the alternative recursion

* � � �)& �5� ,  & ��� � * � � �)& ���� � ,  & ������
* � , ��� ,  & ����14 � �)& �&� * � � ��� � ������* � , � � ,  & ���2 � (2)

If equation (1) does not admit a closed-form expression, then equation (2) does not ad-
mit one either and sampling-based methods are still required. (Also note that the term* � , ��� ,  & ����14 � �)& �&� in equation (2) does not simplify to * � , ��� � �&� because there is a depen-
dency on past values through � �'& � .) Now assuming that we can use a weighted set of
samples

� � +/,/.�)& � 4 % +/,-.� � 0,-2  to represent the marginal posterior distribution

3
� 0 � �
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the marginal density of � �)& � is a Gaussian mixture

3*
0 �
�4�'& ��� ,  & ��� �,+ * � �4�'& ��� � �'& � 4 ,  & �&�@( ��� � �'& ��� ,  & ��� � 05

,-2 
% +/,-.� * � �4�'& ��� ,  & � 4 � +/,/.�)& � �



that can be computed efficiently with a stochastic bank of Kalman filters. That is, we use
PF to estimate the distribution of ��� and exact computations (Kalman filter) to estimate the
mean and variance of � � . In particular, we sample � +/,-.� and then propagate the mean " +/,-.�
and covariance $ +/,/.� of � � with a Kalman filter:

e 
���N�� N�� K c � P 	 
����N TDe 
���N�� K���� P 	 
���N T�� N
� 
���N�� N�� K c � P 	 
����N T � 
���N�� K � P 	 
���N T
	 ��� P 	 
���N T � P 	 
���N T
	� 
���N c �P 	 
���N T � 
���N�� N�� K �P 	 
���N T
	 ��� P 	 
���N T � P 	 
����N T
	$ 
���N�� N�� K c �P 	 
���N TDe 
���N�� N�� K ��� P 	 
���N T�� N
e 
���N c e 
���N�� N�� K � � 
���N�� N�� K �P 	 
����N T
	 � � K 
���N P $ N�� $ 
���N�� N�� K T� 
���N c � 
���N�� N�� K � � 
���N�� N�� K �P 	 
���N T
	 � � K 
���N �P 	 
���N T � 
���N�� N�� K Q

where " ��� ���� ���
� � � � ,  & ���2 � , " � ���

� � � � ,  & � � , , ��� ���� ���
� , � � ,  & ���� � , $ ��� ���� ���� 0 � � ��� ,  & ���2�� , $!� � ��� 0 � � ��� ,  & �&� and � � � ��� 0 � , ��� ,  & ������ .

This is the basis of the RBPF algorithm that was adopted in [13]. Here, we introduce an
extra improvement. Let us expand the expression for the importance weights:

% � �
* � � �'& �5� ,  & �&�� � � �'& ��� ,  & ��� �

* � � �'& ���2 � ,  & ���* � � �)& ���� � ,  & ������
* � � � � � �)& ���2�4 ,  & ���� � � �5� � �)& ���2 4 ,  & ��� (3)

 * � , ��� ,  & ���2�4 � �'& ��� * � � ��� � �'& �����4 ,  & ���2��� � � � � � �)& ���� 4 ,  & � �  (4)

The proposal choice, � � � �)& ��� ,  & ��� � � � � ��� � �'& ���2�4 ,  & ��� * � � �'& ���2 � ,  & ���2�� , states that we are
not sampling past trajectories. Sampling past trajectories requires solving an intractable
integral [14].

We could use the transition prior as proposal distribution: � � � � � � �'& ���2 4 ,  & � � �* � � ��� � �)& ����14 ,  & ����5� � * � � ��� � ������ . Then, according to equation (4), the importance
weights simplify to the predictive density

%'�  * � , �5� ,  & ���2�4 � �'& �&� � �"! , �$# , ��� ���� 4 � ��%  (5)

However, we can do better by noticing that according to equation (3), the optimal pro-
posal distribution corresponds to the choice � � �1� � � �)& ���2 4 ,  & � � � * � � � � � �)& ���� 4 ,  & � � . This
distribution satisfies Bayes rule:

* � � � � � �'& ���2 4 ,  & � � �
* � , � � ,  & ���2 4 � �'& � � * � � � � � �'& ���� 4 ,  & ���2 �* � , ��� ,  & ���2�4 � �'& ����5� (6)

and, hence, the importance weights simplify to

%'�  * � , ��� ,  & ���2�4 � �'& ����5� � �'&5
� A 2 

* � , ��� ,  & ���2�4 � �'& �����4 � ��� * � � ��� � ������ (7)

When the number of discrete states is small, say 10 or 100, we can compute the distributions
in equations (6) and (7) analytically. In addition to Rao-Blackwellisation, this leads to
substantial improvements over standard particle filters. Yet, a further improvement can still
be attained.

Even when using the optimal importance distribution, there is a discrepancy arising from
the ratio * � � �'& ���� � ,  & � �)( * � � �'& ���2 � ,  & ���2 � in equation (3). This discrepancy is what causes
the well known problem of sample impoverishment in all particle filters [11, 15]. To cir-
cumvent it to a significant extent, we note that the importance weights do not depend on



� � (we are marginalising over this variable). It is therefore possible to select particles be-
fore the sampling step. That is, one chooses the fittest particles at time G H �

using the
information at time G . This observation leads to an efficient algorithm (look-ahead RBPF),
whose pseudocode is shown in Figure 4. Note that for standard PF, Figure 3, the impor-
tance weights depend on the sample � +/,-.� , thus not permitting selection before sampling.
Selecting particles before sampling results in a richer sample set at the end of each time
step.

Kalman prediction step� For i=1, . . . , N, and for
	 N_c�� Q%S%S�S)Q���� compute�e 
���N�� N�� K P 	 N T Q �� 
���N�� N�� K P 	 N T Q �$ 
���N�� N�� K P 	 N T Q �� 
���N P 	 N T� For i=1 , . . . , N , evaluate and normalize the importance weights

! 
����N cmf P $ N � $ K�M N�� K Q 	 
���� M N�� K TFc i &�
� A * K � P �$ 
���N
� N�� K P 	 N T Q �� 
���N P 	 N T�T-f P 	 N � 	 
���N�� K T

Selection step� Multiply/Discard particles & �e 
���N�� K Q �� 
���N�� K Q �	 
���� M N�� K ' (��* K with respect to high/low

importance weights ! 
���N to obtain � particles & e 
����N�� K Q � 
����N�� K Q 	 
����� M N�� K ' (��* K .
Sequential importance sampling step� Kalman prediction. For i=1, . . . , N, and for

	 N_c�� Q�S%S)S%Q���� using the resampled
information, re-compute�e 
���N�� N�� K P 	 NWT Q �� 
���N�� N�� K P 	 NUT Q �$ 
���N�� N�� K P 	 NWT Q �� 
���N P 	 NUT� For

	 N c�� Q)S%S�S%Q�� � compute

f P 	 N�� 	 
���� M N�� K Q $ K�M NUT " � P �$ 
���N�� N�� K P 	 NWT Q �� 
���N P 	 NDT�T-f P 	 N�� 	 
���N�� K T� Sampling step 	 
���N � f P 	 N�� 	 
���� M N�� K Q $ K�M NUT
Updating step� For i=1 , . . . , N, use one step of the Kalman recursion to compute the suffi-

cient statistics & e 
���N Q � 
���N ' given & �e N�� N�� K P 	 
����N T Q �� N�� N�� K P 	 
���N T ' .

Figure 4: look-ahead RBPF algorithm at time G . The algorithm uses an optimal proposal
distribution. It also selects particles from time G�H � using the information at time G .

7 Results

The results are shown in Figures 5 and 6. The left graphs show error detection versus
computing time per time-step (the signal sampling time was 1 second). The right graphs
show the error detection versus number of particles. The error detection represents how



many discrete states were not identified properly, and was calculated for 25 independent
runs (1,000 time steps each). The graphs show that look-ahead RBPF works significantly
better (low error rate and very low variance). This is essential for real-time operation with
low error rates.
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Figure 5: Industrial dryer: error detection vs computing time and number of particles.

The graphs also show that even for 1 particle, look-ahead RBPF is able to track the discrete
state. The reason for this is that the sensors are very accurate (variance=0.01). Conse-
quently, the distributions are very peaked and we are simply tracking the mode. Note that
look-ahead RBPF is the only filter that uses the most recent information in the proposal
distribution. Since the measurements are very accurate, it finds the mode easily. We re-
peated the level-tank experiments with noisier sensors (variance=0.08) and obtained the
results shown in Figure 7. Noisier sensors, as expected, reduce the accuracy of look-ahead
RBPF with a small number of particles. However, it is still possible to achieve low error
rates in real-time. Since modern industrial and robotic sensors tend to be very accurate, we
conclude that look-ahead RBPF has great potential.
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