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Abstract

Classification trees are one of the most popular types of classifiers, with
ease of implementation and interpretation being among their attractive
features. Despite the widespread use of classification trees, theoretical
analysis of their performance is scarce. In this paper, we show that a new
family of classification trees, called dyadic classification trees (DCTs),
are near optimal (in a minimax sense) for a very broad range of clas-
sification problems. This demonstrates that other schemes (e.g., neural
networks, support vector machines) cannot perform significantly better
than DCTs in many cases. We also show that this near optimal perfor-
mance is attained with linear (in the number of training data) complexity
growing and pruning algorithms. Moreover, the performance of DCTs
on benchmark datasets compares favorably to that of standard CART,
which is generally more computationally intensive and which does not
possess similar near optimality properties. Our analysis stems from the-
oretical results on structural risk minimization, on which the pruning rule
for DCTs is based.

1 Introduction

Let �������
	���
���� ��� ����� be a jointly distributed pair of random variables. In pattern
recognition, � is called an input vector, and contains the measurements from an experi-
ment. The values in � are referred to as features, attributes, or predictors. � is called a
response variable, and is thought of as a class label associated with � . A classifier is a
function ����
 ��� ��� ����� that attempts to match an input vector with the appropriate class.
The performance of � for a given distribution of the data is measured by the probability of
error: � ��� 	"!$# � �%���&	('!$�)�+*
The classifier with the smallest probability of error, denoted �-, , is called the Bayes classi-
fier. The Bayes classifier is given by

� , ��./	0!
1 � if 23��. 	54768�

otherwise
�



where 23��. 	"! # � � ! � � � !$. � !�� � � � . � is the regression of � on � . The probability
of error for the Bayes classifier is denoted

� , .
The true distribution on the data is generally unknown. In such cases, we may construct a
classifier ��� based on a training dataset ����! � ��� 6 � � 6 	 ��*�*�*�������� ����� 	 � of independent,
identically distributed samples. A procedure that constructs a classifier for all 	 is called a
discrimination rule. The performance of � � ! � � ��.�
�� � 	 is measured by� � ! � � � � 	 ! # � � � ���

�� � 	('!$� � � � �+�
the conditional probability of error. Note that

�
� is random, since ��� is random.

In this paper, we examine a family of classifiers called dyadic classification trees (DCTs),
built by recursive, dyadic partitioning of the input space. The appropriate tree from this
family is obtained by building an initial tree (in a data-independent fashion), followed by a
data-dependent pruning operation based on structural risk minimization (SRM). Thus, one
important distinction between our approach and usual decision trees is that the initial tree
is not adaptively grown to fit the data. The pruning strategy resembles that used by CART,
except that the penalty assigned to a subtree is proportional to the square root of its size.

SRM penalized DCTs lead to a strongly consistent discrimination rule for input data � with
support in the unit cube � � ����� � . We also derive bounds on the rate of convergence of DCTs
to the Bayes error. Under a modest regularity assumption (in terms of the box-counting
dimension) on the underlying optimal Bayes decision boundary, we show that complexity-
regularized DCTs converge to the Bayes decision at a rate of 	�� 6���� ��� 6�� . Moreover, the
minimax error rate for this class is at least 	�� 6�� � . This shows that dyadic classification trees
are near minimax-rate optimal, i.e., that no discrimination rule can perform significantly
better in this minimax sense. We also present an efficient algorithm for implementing the
pruning strategy, which leads to an � ��	 	 algorithm for DCT construction. The pruning
algorithm requires � ���! #"%$&� 	 operations to prune an initial tree with � terminal nodes,
and is based on the familiar pruning algorithm used by CART [1]. Finally, we compare
DCTs with a CART-like tree classifier on four common datasets.

2 Dyadic Classification Trees

Throughout this work we assume that the input data is restricted to the unit hypercube,
� � ����� � . This is a realistic assumption for real-world data, provided appropriate translation
and scaling is applied. Let ' ! �)( 6 ��*�*�*�� (+* � be a tree-structured partition of the input
space, where each

(+,
is a hyperrectangle with sides parallel to the coordinate axes. Given

an integer - , let � -.� � denote the element of
� ����*�*�* ��/ � that is congruent to - modulo / . If(0, �1' is a cell at depth 2 in the tree, let

( � 6��, and
( � 8 �, be the rectangles formed by splitting(0,

at its midpoint along coordinate � 2+3 ��� � . As a convention, assume
( � 6��, contains those

points of
(0,

that are less than or equal to the midpoint along the dimension being split.

Definition 1 A sequential dyadic partition (SDP) is any partition of � � ����� � that can be
obtained by applying the following rules recursively:

1. The trivial partition ' ! � � � ����� � � is an SDP,

2. If ' ! �)( 6 ��*�*�*�� (+* � is an SDP, then so is�4( 6 ��*�*�*�� (5, � 6 � ( � 6��, � ( � 8 �, � (0, � 6 ��*�*�*�� ( * �+�
where 6 may be any integer, �87
6&7:9 .

We define a dyadic classification tree (DCT) to be a sequential dyadic partition with a class
label (0 or 1) assigned to each node in the tree.



The partitions are sequential because children must be split along the next coordinate after
the coordinate where their parent was split. Such splits are referred to as forced splits, as
opposed to free splits, in which any coordinate may be split. The partitions are dyadic
because we only allow midpoint splits.

By a complete DCT of depth
�

, we mean a DCT such that every possible split up to depth
�

has been made. In a complete DCT, every terminal node has volume ��� � . If
�

is a multiple
of / , then the terminal nodes of a complete DCT are hypercubes of sidelength ��� � � � .
3 SRM for DCTs

Structural risk minimization (SRM) is an inductive principle for selecting a classifier from
a sequence of sets of classifiers based on complexity regularization. It was introduced by
Vapnik and Chervonenkis (see [2]), and later analyzed by Lugosi and Zeger [3], [4, Ch.
18]. We formulate structural risk minimization for dyadic classification trees by applying
results from [4, Ch. 18].

SRM is formulated in terms of the VC dimension, which we briefly review. Let � be a
collection of classifiers � �5
 � � � � ����� , and let � 6 ��*�*�*���� � � 
 � . If each of the � �
possible labellings of � 6 ��*�*�*����4� can be correctly classified by some � ��� , we say �
shatters � 6 ��*�*�*���� � . The Vapnik-Chervonenkis dimension (or VC dimension) of � , denoted
by � , is the largest integer 	 for which there exist � 6 ��*�*�* ��� � � 
 � such that � shatters� 6 ��*�*�*���� � . If � shatters some 	 points for every 	 , then � !	� by definition. The VC
dimension is a measure of the capacity of � . As � increases, � is able to separate more
complex patterns.

If 
 !��
� for some integer ��� �
, we say 
 is dyadic. For dyadic 
 , and for �+7:9 7�
 � ,

let � � * �� denote the collection of all DCTs with 9 terminal nodes and depth not exceeding
/�� , so that no terminal node has a side of length less than ����
 !�� ��� . It is easily shown

that the VC dimension of � � * �� is 9 [5].

Given a dyadic integer 
 , and training data
� ��� , � � , 	 � �,�� 6 , for 9)!��+��� ��*�*�* ��
 � , define

� � * ���� � ! arg min�
 "!$#&%�'( )� �3� � 	 �
where )� � � � 	"! �

	
�*
,�� 6 + � �%��� , 	('!$� , 	

is the empirical risk of � . Thus, � �
*
���� � is selected by empirical risk minimization over � � * �� .

Define the penalty term ,
��9 ��	 	 !.- / � 9& " $ �10)	 		 � (1)

and for � �2� � * �� , define the penalized risk3� �3� � 	"! )� �3��� 	 3 , ��9 ��	 	 *
The SRM principle selects the classifier � ,��� � from among � �

*
���� � � 9 ! ���4� ��*�*�*���
 � , that

minimizes
3� � � � � * ���� � 	 . We refer to �3,�5� � as a penalized or complexity-regularized dyadic

classification tree. We have the following risk bound.

Theorem 1 For all 	 and 9 76
 � , and for all 78�:9 , � 9 ��	 	 ,
#<; � ��� ,��� � 	>= ?�@5A�
 "!$#&%�'( � ���/	 4B7DC�7:0 � �
EGF � 6 8�H 3JI 	 * 0 � �KE1F ��L 6 8 �



and in particular, for all 	 and 
 ,

� �
� ��� ,��� � 	 � = � , 7 � ? @6 � * � ��� � ��� - 9  " $�	�3J9� 	 3

� ?�@5A�
 "! # %�'( � � � 	 = � ,	�
� *
Sketch of proof: Apply Theorem 18.3 in [4] with � � * � ! � � * �� and � * ! 9 for 9 !���4� ��*�*�*���
 � . �
The first term on the right-hand side of the second bound is an upper bound on the expected
estimation error. The second term is the approximation error. Even though the penalized
DCT does not know the value of 9 that optimally balances the two terms, it performs as
though it does, because of the “min” in the expression. Nobel [6] gives similar results for
classifiers based on initial trees that depend on the data.

The next result demonstrates strong consistency for the penalized DCT, where strong con-
sistency means

� � � � , with probabilty one.

Theorem 2 Suppose 	 ��
 � � , with 
 ! 
 ��	 	 assuming only dyadic integer values. If
 � !
� ��	 �  #"%$�	 	 , then the penalized dyadic classification tree is strongly consistent for
all distributions supported on the unit hypercube.

Sketch of proof: The proof follows from the first part of Theorem 1 and strong universal
consistency of the regular histogram classifier. See [5] for details. �
4 Rates of Convergence

In this section, we investigate bounds on the rate of convergence of complexity-regularized
DCTs. First we obtain upper bounds on the rate of convergence for a particular class of
distributions on � ��� � 	 . We then state a minimax lower bound on the rate of convergence
of any data based classifier for this class.

Most rate of convergence studies in pattern recognition place a constraint on the regression
function 23��. 	"! # � � ! � � � !$. � by requiring it to belong to a certain smoothness class
(e.g. Lipschitz, Besov, bounded variation). In contrast, the class we study is defined in
terms of the regularity of the Bayes decision boundary, denoted � . We allow 23��. 	 to be
arbitrarily irregular away from � , so long as it is well behaved near � . The Bayes decision
boundary is informally defined as � ! � . � 23��. 	�! ���"� � . A more rigorous definition
should take into account the fact that 2 might not take on the value ���K� [5].

We now define a class of distributions. Let � ��� � 	 denote a random pair, as before, where� takes on values in � � ����� � .
Definition 2 Let � 6 ��� 8 4 �

. Define � ��� 6 ��� 8 	 to be the collection of all distributions on��� � �
	 such that for all dyadic integers 
 , if we subdivide the unit cube into cubes of side
length ����
 ,

A1 (Bounded marginal): For any such cube � intersecting the Bayes decision boundary,# � � ��� � 7�� 6�� ���(	0!�� 6 ��
 � , where � denotes the Lebesgue measure.

A2 (Regularity): The Bayes decision boundary passes through at most � 8 
 � � 6 of the
resulting 
 � cubes.

Define � to be the class of all � ��� � 	 belonging to � ��� 6 ��� 8 	 for some � 6 ��� 8 .
The first condition holds, for example, if the density of � is essentially bounded with
respect to the Lebesgue measure, with essential supremum 7�� 6 . The second condition



can be shown to hold when one coordinate of the Bayes decision boundary is a Lipschitz
function of the others. See, for example, the boundary fragment class of [7] with � ! �
therein.

The regularity condition A2 is closely related to the notion of box-counting dimension of
the Bayes decision boundary [8]. Roughly speaking, A2 holds for some � 8 if and only if the
Bayes decision boundary has box-counting dimension / = � . The box-counting dimension
is an upper bound on the Hausdorff dimension, and the two dimensions are equal for most
“reasonable” sets. For example, if � is a smooth 9 -dimensional submanifold of 
 � , then �
has box-counting dimension 9 .

4.1 Upper Bounds on DCT Rate of Convergence

Theorem 3 Assume the distribution of � ��� � 	 belongs to ��� � 6 ��� 8 	 . Let � ,��� � be the
penalized dyadic classification tree, as described in Section 3. If 
�� � 	 �  #"%$ 	 	 6���� ��� 6�� ,
then there exists a constant ��� 4 �

such that for all 	&4 � ,
� �
� � � ,��� � 	 � = � , 7������  #"%$�	 � 	 	 6���� ��� 6 � *

When we write 
�� � 	 �  " $ 	 	 6���� ��� 6 � , we mean  " $ 8 
 !	�  " $ 8 � � 	 �  " $�	 	 6���� ��� 6�� 	�3��

� , where ��
 � 
 is arbitrary.

Sketch of proof: It can be shown that for each dyadic 
 , there exists a pruned DCT � with
9 ! � � 
 � � 6 	 leaf nodes, such that

� � � 	 = � , 7 � 6 � 8 ��
 . Plugging this into the risk
bound in Theorem 1 and minimizing over 
 produces the desired result [5]. �
The minimal value of � � in the above theorem tends to � � 6 � 8 as / � � . Note that similar
rate of convergence results for data-grown trees would be more difficult to establish, since
the approximation error is random in those cases.

It is possible to eliminate the log factor in the upper bound by means of Alexander’s in-
equality, as discussed in [4, Ch. 12]. This leads to a much larger value of � � , but an
improved asymptotic rate.

To illustrate the significance of Theorem 3, consider a penalized histogram classifer, with
bin width determined adaptively by structural risk minimization, as described in [4, Prob-
lem 18.6]. For that rule, the best exponent on the rate of convergence for our class is��� � /83B��	 , compared with ��� � /83 ��	 for our rule. Intuitively, this is because the adaptive
resolution of dyadic classification trees enables them to focus on the / = � dimensional
decision boundary, rather than the / dimensional regression function.

In the event that the data � occupies a /���� / dimensional subset of � � ����� � , the proof of
Theorem 3 follows through as before, but with an exponent of / � 3 � instead of / 3 � . Thus,
the penalized DCT is able to automatically adapt to the dimensionality of the input data.

4.2 Minimax Lower Bound

The next result demonstrates that complexity-regularized DCTs nearly achieve the minim-
imax rate for our class of distributions.

Theorem 4 Let � � denote any discrimination rule based on training data. There exists a
constant � 4 �

such that for 	 sufficiently large,?�@5A������������ �
� ����� 	 � = � , � � 	 � 6�� � *



Sketch of proof: This result follows from Theorem 2 in [7] (with � !�� ! � therein). The
proof of that result is in turn based on Assouad’s lemma. �
Theorems 3 and 4, together with the above remark on Alexander’s inequality, show that
complexity-regularized DCTs are close to minimax-rate optimal for the class � . We sus-
pect that the class studied by Tsybakov [7], used in our minimax proof, is more restrictive
than our class. Therefore, it may be that the exponent ��� / in the above theorem can be
decreased to ��� � /53$��	 , in which case we achieve the minimax rate.

Although bounds on the minimax rate of convergence in pattern recognition have been in-
vestigated in previous work [9, 10], the focus has been on placing regularity assumptions
on the regression function 2 � ./	)! # � � ! � � � ! . � . Yang demonstrates that in such
cases, for many common function spaces (e.g. Lipschitz, Besov, bounded variation), clas-
sification is not easier than regression function estimation [10]. This contrasts with the
conventional wisdom that, in general, classification is easier than regression function esti-
mation [4, Ch. 6]. Our approach is to study minimax rates for distributions defined in terms
of the regularity of the Bayes decision boundary. With this framework, we see that mini-
max rates for classification can be orders of magnitude faster than for estimation of 23��./	 ,
since 23��./	 may be arbitrarily irregular away from the decision boundary for distributions
in our class. This view of minimax classification has also been adopted by Mammen and
Tsybakov [7,11]. Our contribution with respect to their work is an implementable discrim-
ination rule, with guaranteed computational complexity, that nearly achieves the minimax
lower bounds. We also remark that “fast rates” (e.g., � ��	�� 6 	 ) obtained by those authors
require much stronger assumptions on the smoothness of the decision boundary and 23� ./	
than we employ in this paper.

5 An Efficient Pruning Algorithm

In this section we describe an algorithm to compute the penalized DCT efficiently. We
switch notation, using

�
to denote an arbitrary classification tree. Let

� � 7 � denote that� � is a pruned version of
�

(possibly
�

itself). For � � 
 , define
� 6 ��� 	"! arg min��� ��� )� � � � � 	 3	� � � � � �

and � 8 ��� 	"! arg min� � ��� )� �3� � � 	 3	� 
 � � � � �
where

� � � � denotes the number of leaf nodes of
� � . We are interested in computing

� 8 ���%	
when

�
is a complete dyadic tree, and �&! 
 / �  #"%$ �G0)	 	��4	 .

Breiman, et.al. [1] showed the existence of weights = � !�� 
 �
� 6 ������� �
��� !��
and subtrees

� ��� 6 ������� ��� � ! ��� � ��� � such that
� 6 ���%	 !�� , whenever

� � � � , � 6 ��� , 	 . Moreover, the weights � , and subtrees � , may be found in � � � � �  " $ � � � 	
operations [12, 13]. A similar result holds for the square-root penalty, and the trees pro-
duced are a subset of the trees produced by the additive penalty [5].

Theorem 5 For each � , there exists � � such that
� 8 ��� 	"! � 6 ��� � 	 .

Therefore, pruning
�

with the square-root penalty always produces one of the trees ��� .
We may then determine the pruned tree

� � 7 � minimizing the penalized risk
)� � � � � 	 3

�

 � � � � by minimizing this quantity over � , ��6 ! �+��*�*�* � � . Thus, square-root pruning can

be performed in � � � � �  " $ � � � 	 operations.

In the context of constructing a penalized DCT, we start with an initial tree
�

that is a
complete DCT. For the classifiers in Theorems 2 and 3, this initial tree has size

� � � !



Table 1: Comparison of a greedy tree growing procedure, with model selection based on
holdout error estimate, and two DCT based methods. Numbers shown are test errors.

CART-HOLD DCT-HOLD DCT-SRM
Pima Indian Diabetes 26.8 % 27.2 % 33.0 %
Wisconsin Breast Cancer 4.7 % 6.4 % 6.3 %
Ionosphere 12.88 % 18.6 % 18.8 %
Waveform 19.8 % 29.1 % 31.0 %


 � !�� ��	 �  " $�	 	 , and so pruning requires � ��	 	 operations. Since the growing procedure
also requires � ��	 	 operations, the overall construction is � � 	 	 .
6 Experimental Comparison

To gain a rough idea of the usefulness of dyadic classification trees in practice, we com-
pared two DCT based classifiers with a greedy tree growing procedure, similar to that used
by CART [1] or C4.5 [14], where each successive split is chosen to maximize an informa-
tion gain defined in terms of an impurity function. We considered four two-class datasets,
available on the web at http://www.ics.uci.edu/ � mlearn/MLRepository.html. For each
dataset, we randomly split the data into two halves to form training and testing datasets.

For the greedy growing scheme, we used half of the training data to grow the tree, and con-
structed every possible pruning of the initial tree with an additive penalty. The best pruned
tree was chosen to minimize the holdout error on the rest of the training data. We call this
classifier CART-HOLD. The second classifier, DCT-HOLD, was constructed in a similar
manner, except that the initial tree was a complete DCT, and all of the training data was
used for computing the holdout error estimate. Finally, we implemented the complexity-
regularized DCT, denoted DCT-SRM, with square-root penalty determined by Equation 1.
Table 1 shows the misclassification rate for each algorithm on each dataset.

From these experiments, we might conclude two things: (i) The greedily-grown partition
outperforms the dyadic partition; and (ii) Much of the discrepancy between CART-HOLD
and DCT-SRM comes from the partitioning, and not from the model selection method
(holdout versus SRM). Indeed, DCT-SRM beats or nearly equals DCT-HOLD on three of
the four datasets. Conclusion (i) may be premature, for it is shown in [4, Ch. 20] that
greedy partitioning based on impurity functions can perform arbitrarily poorly for some
distributions, while this is never the case for complexity-regularized DCTs. In light of (ii),
it may be possible to apply Nobel’s pruning rules for data-grown trees [6], which can now
be implemented with our algorithm, to equal or surpass the performance of CART, while
avoiding the heuristic and computationally expensive cross-validation technique usually
employed by CART to determine the appropriately pruned tree.

7 Conclusion

Dyadic classification trees exhibit desirable theoretical properties (finite sample risk
bounds, consistency, near minimax-rate optimality) and can be trained extremely rapidly.
The minimax result demonstrates that other discrimination rules, such as neural networks
or support vector machines, cannot significantly outperform DCTs (in this minimax sense).
This minimax result is asymptotic, and considers worst-case distributions. From a practi-
cal standpoint, with finite samples and non-worst-case distributions, other rules may beat
DCTs, which our experiments on benchmark datasets confirm. The sequential dyadic par-
titioning scheme is especially susceptible when many of the features are irrelevant, since



it must cycle through all features before splitting a feature again. Several modifications to
the current dyadic partitioning scheme may be envisioned, such as free dyadic or median
splits.

Such modified tree induction strategies would still possess many of the desirable theoretical
properties of DCTs. Indeed, Nobel has derived risk bounds and consistency results for
classification trees grown according to data [6]. Our square-root pruning algorithm now
provides a means of implementing his pruning schemes for comparison with other model
selection techniques (e.g., holdout or cross-validation). It remains to be seen whether the
rate of convergence analysis presented here extends to his work.

Further details on this work, including full proofs, may be found in [5].
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