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Abstract

Missing data is common in real-world datasets and is a problem for many
estimation techniques. We have developed a variational Bayesian method
to perform Independent Component Analysis (ICA) on high-dimensional
data containing missing entries. Missing data are handled naturally in the
Bayesian framework by integrating the generative density model. Mod-
eling the distributions of the independent sources with mixture of Gaus-
sians allows sources to be estimated with different kurtosis and skewness.
The variational Bayesian method automatically determines the dimen-
sionality of the data and yields an accurate density model for the ob-
served data without overfitting problems. This allows direct probability
estimation of missing values in the high dimensional space and avoids
dimension reduction preprocessing which is not feasible with missing
data.

1 Introduction

Data density estimation is an important step in many machine learning problems. Often we
are faced with data containing incomplete entries. The data may be missing due to mea-
surement or recording failure. Another frequent cause is difficulty in collecting complete
data. For example, it could be expensive and time consuming to perform some biomedical
tests. Data scarcity is not uncommon and it would be very undesirable to discard those data
points with missing entries when we already have a small dataset. Traditionally, missing
data are filled in by mean imputation or regression imputation during preprocessing. This
could introduce biases into the data cloud density and adversely affect subsequent analy-
sis. A more principled way would be to use probability density estimates of the missing
entries instead of point estimates. A well known example of this approach is the use of
Expectation-Maximization (EM) algorithm in fitting incomplete data with a single Gaus-
sian density [5].

Independent Component Analysis (ICA) [4] tries to locate independent axes within the data
cloud and was developed for blind source separation. It has been applied to speech separa-
tion and analyzing fMRI and EEG data. ICA is also used to model data density, describing
data as linear mixture of independent features and finding projections that may uncover in-
teresting structure in the data. Maximum likelihood learning of ICA with incomplete data
has been studied by [6], in the limited case of a square mixing matrix and predefined source
densities.

Many real-world datasets have intrinsic dimensionality smaller then that of the observed



data. With missing data, principal component analysis cannot be used to perform dimen-
sion reduction as preprocessing for ICA. Instead, the variational Bayesian method applied
to ICA can handle small datasets with high observed dimension [1, 2]. The Bayesian
method prevents overfitting and performs automatic dimension reduction. In this paper, we
extend the variational Bayesian ICA method to problems with missing data. The probabil-
ity density estimate of the missing entries can be used to fill in the missing values. This
also allows the density model to be refined and made more accurate.

2 Model and Theory

2.1 ICA generative model with missing data

Consider a data set of T data points in an N -dimensional space: X = {xt ∈ RN},
t = {1, · · · , T}. Assume a noisy ICA generative model for the data:

P (xt|θ) =

∫

N (xt|Ast + ν,Ψ)P (st|θs) dst (1)

where A is the mixing matrix, ν is the observation mean and Ψ
−1 is the diagonal noise

variance. The hidden source st is assumed to have L dimensions. Each component of st is
modeled by a mixture of K Gaussians to allow for source densities of various kurtosis and
skewness,

P (st|θs) =
L
∏

l

(

K
∑

kl

πlkl
N (st(l)|φlkl

, βlkl
)

)

(2)

Split each data point into a missing part and an observed part: x
>
t = (xo>

t ,xm>
t ). In this

paper, we only consider the random missing case [3], i.e. the probability for the missing
entries x

m
t is independent of the value of x

m
t , but could depend on the value of x

o
t . The

likelihood of the dataset is then defined to be

L(θ;X) =
∏

t

P (xo

t
|θ) , (3)

P (xo

t
|θ) =

∫

P (xt|θ) dxm

t
=

∫

N (xo

t
|[Ast + ν]o

t
, [Ψ]o

t
)P (st|θs) dst (4)

Here we have introduced the notation [·]o
t
, which means taking only the observed dimen-

sions (corresponding to the tth data point) of whatever is inside the square brackets. Since
eqn. (4) is similar to eqn. (1), the variational Bayesian ICA [1, 2] can be extended natu-
rally to handled missing data, but only if care is taken in discounting missing entries in the
learning rules.

2.2 Variational Bayesian method

In a full Bayesian treatment, the posterior distribution of the parameters θ is obtained by

P (θ|X) =
P (X|θ)P (θ)

P (X)
=

∏

t
P (xo

t
|θ)P (θ)

P (X)
(5)

where P (X) is the marginal likelihood of the data and given as:

P (X) =

∫

∏

t

P (xo

t |θ)P (θ) dθ (6)

The ICA model for P (X) is defined with the following priors on the parameters P (θ),

P (Anl) = N (Anl|0, αl)

P (αl) = G(αl|ao(αl), bo(αl))

P (πl) = D(πl|do(πl))

P (φlkl
) = N (φlkl

|µo(φlkl
), Λo(φlkl

))

P (βlkl
) = G(βlkl

|ao(βlkl
), bo(βlkl

))

(7)

P (νn) = N (νn|µo(νn), Λo(νn)) P (Ψn) = G(Ψn|ao(Ψn), bo(Ψn)) (8)



where N (·), G(·) and D(·) are the normal, gamma and Dirichlet distributions.ao(·), bo(·),
do(·), µo(·), and Λo(·) are prechosen hyperparameters for the priors.

Under the variational Bayesian treatment, instead of performing the integration in eqn. (6)
to solve for P (θ|X) directly, we approximate it by Q(θ) and opt to minimize the Kullback-
Leibler distance between them:

−KL(Q(θ)|P (θ|X)) =

∫

Q(θ) log
P (θ|X)

Q(θ)
dθ

=

∫

Q(θ)

[

∑

t

log P (xo

t
|θ) + log

P (θ)

Q(θ)

]

dθ − log P (X) (9)

Since −KL(Q(θ)|P (θ|X)) ≤ 0, we get a lower bound for the log marginal likelihood of
the data,

log P (X) ≥

∫

Q(θ)
∑

t

log P (xo

t
|θ) dθ +

∫

Q(θ) log
P (θ)

Q(θ)
dθ , (10)

which can also be obtained by applying the Jensen’s inequality to eqn. (6). Q(θ) is then
solved by functional maximization of the lower bound. A separable approximate posterior
Q(θ) will be assumed:

Q(θ) = Q(ν)Q(Ψ) × Q(A)Q(α) ×
∏

l

[

Q(πl)
∏

kl

Q(φlkl
)Q(βlkl

)

]

. (11)

The second term in eqn. (10), which is the negative Kullback-Leibler divergence between
approximate posterior Q(θ) and prior P (θ), can be expanded as,

∫

Q(θ) log
P (θ)

Q(θ)
dθ =

∑

l

∫

Q(πl) log
P (πl)

Q(πl)
dπl

+
∑

l kl

∫

Q(φlkl
) log

P (φlkl
)

Q(φlkl
)

dφlkl
+
∑

l kl

∫

Q(βlkl
) log

P (βlkl
)

Q(βlkl
)

dβlkl

+

∫∫

Q(A)Q(α) log
P (A|α)

Q(A)
dA dα +

∫

Q(α) log
P (α)

Q(α)
dα

+

∫

Q(ν) log
P (ν)

Q(ν)
dν +

∫

Q(Ψ) log
P (Ψ)

Q(Ψ)
dΨ (12)

2.3 Special treatment for missing data

Thus far the analysis follows almost exactly that of the variational Bayesian ICA on com-
plete data, except that P (xt|θ) is replaced by P (xo

t |θ) in eqn. (6) and consequently the
missing entries are discounted in the learning rules. However, it would be useful to obtain
Q(xm

t |xo
t ), i.e., the approximate distribution on the missing entries, which is given by

Q(xm

t |xo

t ) =

∫

Q(θ)

∫

N (xm

t |[Ast + ν]mt , [Ψ]mt )Q(st) dst dθ . (13)

As noted in [6], elements of st given x
o
t

are dependent. More importantly, under the ICA
model, Q(st) is unlikely to be a single Gaussian. This is evident from figure 1 which shows
the probability density functions of the data x and hidden variable s. The inserts show
the sample data in the two spaces. Here the hidden sources assume density of P (sl) ∝
exp(−|sl|0.7). They are mixed noiselessly to give P (x) in the left graph. The cut in the
left graph represents P (x1|x2 = −0.5), which transforms into a highly correlated and
non-Gaussian P (s|x2 = −0.5).
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Figure 1: Pdfs for the data x (left) and hidden sources s (right). Inserts show the sample
data in the two spaces. The “cuts” show P (x1|x2 = −0.5) and P (s|x2 = −0.5).

Unless we are interested only in the first and second order statistics of Q(xm
t |xo

t ), we
should try to capture as much structure as possible of P (st|xo

t ) in Q(st). In this paper, we
take a slightly different route from [1, 2] when performing variational Bayesian learning.
First, we break down P (st) (eqn. 2) into a mixture of KL Gaussians in the L dimensional
s space.

P (st) =
∑

k1

· ·
∑

kL

[π1k1
× · · ×πLkL

×N (st(1)|φ1k1
β1k1

) × · · ×N (st(L)|φLkL
βLkL

)]

=
∑

k

πkN (st|φk
, β

k
) (14)

Here we have defined k to be a vector index. The “kth” Gaussian is centered at φ
k

, of
inverse covariance β

k
, in the source s space,

πk = π1k1
× · · · × πLkL

βk = diag (β1k1
, · · ·βLkL

)

φ
k

= (φ1k1
, · · · , φlkl

, · · · , φLkL
)>

k = (k1, · · · , kl, · · · , kL)>, kl = 1, · · · , K
(15)

Log likelihood for x
o
t is then expanded using the Jensen’s inequality,

log P (xo

t
|θ) = log

∑

k

πk

∫

P (xo

t
|st, θ) N (st|φk

, β
k
) dst

≥
∑

k

Q(kt) log

∫

P (xo

t |st, θ)N (st|φk, βk) dst +
∑

k

Q(kt) log
πk

Q(kt)
(16)

Here Q(kt) is a short form for Q(kt = k). kt is a discrete hidden variable and Q(kt = k)
is the probability that the tth data point belongs to the kth Gaussian. Recognizing that st is
just a dummy variable, we introduce Q(skt), apply the Jensen’s inequality again and get

log P (xo

t |θ) ≥
∑

k

Q(kt)

[
∫

Q(skt) log P (xo

t |skt, θ) dskt

+

∫

Q(skt) log
N (skt|φk, βk)

Q(skt)
dskt

]

+
∑

k

Q(kt) log
πk

Q(kt)
(17)

Substituting log P (xo
t |θ) back into eqn. (10), the variational Bayesian method can be con-

tinued as usual. We have drawn in figure 2 a simplified graphical representation for the
generative model of variational ICA. xt is the observed variable, kt and st are hidden vari-
ables and the rest are model parameters, where kt indicates which of the KL expanded
Gaussians generated st.
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Figure 2: A simplified directed graph for the generative model of variational ICA. xt is the
observed variable, kt and st are hidden variables and the rest are model parameters. The
kt indicates which of the KL expanded Gaussians generated st.

3 Learning Rules

Combining eqns. (10,12 and 17) we perform functional maximization on the lower bound
of the log marginal likelihood, log P (X), w.r.t. Q(θ) (eqn. 11), Q(kt) and Q(skt) (eqn. 17)
and obtain the following learning rules for the sufficient statistics of Q(θ) and Q(skt):

Λ(νn) = Λo(νn) + 〈Ψn〉
∑

t

ont

µ(νn) =
Λo(νn)µo(νn) + 〈Ψn〉

∑

t
ont

∑

k
Q(kt)〈(xnt −An·skt)〉

Λ(νn)

(18)

a(Ψn) = ao(Ψn) +
1

2

∑

t

ont

b(Ψn) = bo(Ψn) +
1

2

∑

t

ont

∑

k

Q(kt)〈(xnt −An·skt − νn)2〉
(19)

Λ(An·) = diag (〈α1〉, · · · 〈αL〉) + 〈Ψn〉
∑

t

ont

∑

k

Q(kt)〈skts
>

kt
〉

µ(An·) =

(

〈Ψn〉
∑

t

ont(xnt − 〈νn〉)
∑

k

Q(kt)〈s
>

kt〉

)

Λ(An·)
−1

(20)

a(αl) = ao(αl) +
N

2
b(αl) = bo(αl) +

1

2

∑

n

〈A2

nl
〉 (21)

d(πlk) = do(πlk) +
∑

t

∑

kl=k

Q(kt) (22)

Λ(φlkl
) = Λo(φlkl

) + 〈βlkl
〉
∑

t

∑

kl=k

Q(kt)

µ(φlkl
) =

Λo(φlkl
)µo(φlkl

) + 〈βlkl
〉
∑

t

∑

kl=k
Q(kt)〈skt(l)〉

Λ(φlkl
)

(23)

a(βlkl
) = ao(βlkl

) +
1

2

∑

t

∑

kl=k

Q(kt)

b(βlkl
) = bo(βlkl

) +
1

2

∑

t

∑

kl=k

Q(kt)〈(skt(l) − φlkl
)2〉

(24)

Q(skt) = N (skt|µ(skt),Λ(skt))

Λ(skt) = diag (〈β1k1
〉, · · · 〈βLkL

〉) + 〈A>diag (o1tΨ1, · · · oNtΨN) A〉 (25)

Λ(skt)µ(skt) = 〈β1k1
φ1k1

, · · ·βLkL
φLkL

〉> + 〈A>diag (o1tΨ1, · · · oNtΨN ) (xt − ν)〉
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Figure 3: The approximation of Q(xm
t
|xo

t
) from the full missing ICA (solid line) and

the polynomial missing ICA (dashed line). Shaded area is the exact posterior P (xm
t
|xo

t
)

corresponding to the noiseless mixture in fig. 1 with observed x2=–2. Dotted lines are
contribution from the individual Q(xm

kt
|xo

t
,k).

In the above equations, 〈·〉 denotes the expectation over the posterior distributions Q(·).
An· is the nth row of the mixing matrix A,

∑

kl=k
means picking out those Gaussians

such that the lth element of their indices k has the value of k, and ont is a binary indicator
variable for whether or not xnt is observed.

For a model of equal noise variance among all the observation dimensions, the summation
in the learning rules for Q(Ψ) would be over both t and n. Note that there exists scale
and translational degeneracy in the model, as given by eqn. (1) and (2). After each update
of Q(πl), Q(φlkl

) and Q(βlkl
), it is better to rescale P (st(l)) to have zero mean and unit

variance. Q(skt), Q(A), Q(α), Q(ν) and Q(Ψ) have to be adjusted correspondingly.
Finally, Q(kt) is given by,

log Q(kt) = 〈log P (xo

t
|skt, θ)+logN (skt|φk, βk)− logQ(skt)+logπk〉− log zt (26)

where zt is a normalization constant. The lower bound E(X, Q(θ)|H) for the log marginal
likelihood

E(X, Q(θ)|H) =
∑

t

log zt +

∫

Q(θ) log
P (θ)

Q(θ)
dθ (27)

can be monitored during learning and used for comparison of different solutions or models.

4 Filling in missing entries

The approximate distribution Q(xm
t |xo

t ) can be obtained by a summation of Q(xm

kt
|xo

t ,k):

Q(xm

t
|xo

t
) =

∑

k

Q(kt)

∫

δ(xm

t
− x

m

kt
)Q(xm

kt
|xo

t
,k) dxm

kt
, (28)

Q(xm

kt|x
o

t ,k) =

∫

Q(θ)

∫

N (xm

kt|[Askt + ν]mt , [Ψ]mt )Q(skt) dskt dθ (29)

Estimation of Q(xm
t |xo

t ) using the above equations is demonstrated in fig. 3. The shaded
area is the exact posterior P (xm

t
|xo

t
) for the noiseless mixing in fig. 1 with observed x2=–2

and the solid line is the approximation by eqn. 28–29. We have modified the variational
ICA of [1] by discounting missing entries in the learning rules. The dashed line is the
approximation of Q(xm

t
|xo

t
) from this modified method. The treatment of fully expanding

the KL hidden source Gaussians discussed in section 2.3 is called “full missing ICA”, and
the modified method is “polynomial missing ICA”. The “full missing ICA” gives a more
accurate fit for P (xm

t
|xo

t
) and a better estimate for 〈xm

t
|xo

t
〉.
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Figure 4: a)-d) Source density modeling by variational missing ICA of the synthetic data.
Histograms: recovered sources distribution; dashed lines: original probability densities;
solid line: mixture of Gaussians modeled probability densities; dotted lines: individual
Gaussian contribution. e) E(X, Q(θ)|H) as a function of hidden source dimensions.

5 Experiment

5.1 Synthetic Data

In the first experiment, 200 data points were generated by mixing 4 sources randomly in a 7
dimensional space. The generalized Gaussian, gamma and beta distributions were used to
represent source densities of various skewness and kurtosis (fig. 4 a)-d)). Noise at –26 dB
level was added to the data and missing entries were created with a probability of 0.3. In
fig. 4 a)-d), we plotted the histograms of the recovered sources and the probability density
functions (pdf) of the 4 sources. The dashed line is the exact pdf used to generate the data
and solid line is the modeled pdf by mixture of two 1-D Gaussians (eqn. 2). Fig. 4 e)
plots the lower bound of log marginal likelihood (eqn. 27) for models assuming different
numbers of intrinsic dimensions. As expected, the Bayesian treatment allows us to the infer
the intrinsic dimension of the data cloud. In the figure, we also plot the E(X, Q(θ)|H) from
the polynomial missing ICA. It is clear that the full missing ICA gave a better fit to the data
density. Furthermore, the polynomial missing ICA converges slower per epoch of learning,
suffers from many more local minima and problems get worse with higher missing rate.

5.2 Mixing Images

This experiment demonstrates the ability of the proposed method to fill in missing values
while performing demixing. The 1st column in fig. 5 shows the 2 original 380-by-380
pixels images. They were linearly mixed into 3 images and –20 dB noise was added. 20%
missing entries were introduced randomly. The denoised mixtures and recovered sources
are in the 3rd and 4th columns of fig. 5. 0.8% of the pixels were missing from all 3 mixed
images and could not be recovered. 38.4% of the pixels were missing from only 1 mixed
image and could be filled in with low uncertainty. 9.6% of the pixels were missing from
any two of the mixed images. Estimation of their values incurred high uncertainty. From
fig. 5, we can see that the source images were well separated and the mixed images were
nicely denoised. The denoised mixed images in this example were only meant to visually
illustrate the method. However, if (x1, x2, x3) represent cholesterol, blood sugar and uric
acid level, for example, it would be possible to fill in the third when only two are available.

6 Conclusion

In this paper, we derived the learning rules for variational Bayesian ICA with missing data.
The complexity of the method is exponential in L. However, this exponential growth in
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Figure 5: A demonstration of recovering missing values. The original images are in the 1st
column. 20% of the pixels in the mixed images (2nd column) are missing, while only 0.8%
are missing from the denoised mixed (3rd column) and separated images (4th column).

complexity is manageable and worthwhile for small data sets containing missing entries
in a high dimensional space. The proposed method shows promise in analyzing and iden-
tifying projections of datasets that have a very limited number of expensive data points
yet contain missing entries due to data scarcity. We have applied the variational missing
ICA to a primates brain volumetric dataset containing 44 examples in 57 dimensions. Very
encouraging results were obtained and will be reported in another paper.
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