
Scaling of Probability-Based Optimization 
Algorithms 

J. L. Shapiro 
Department of Computer Science University of Manchester 

Manchester, M13 9PL U.K. jls@cs.man.ac.uk 

Abstract 

Population-based Incremental Learning is shown require very sen­
sitive scaling of its learning rate. The learning rate must scale with 
the system size in a problem-dependent way. This is shown in two 
problems: the needle-in-a haystack, in which the learning rate must 
vanish exponentially in the system size, and in a smooth function 
in which the learning rate must vanish like the square root of the 
system size. Two methods are proposed for removing this sensitiv­
ity. A learning dynamics which obeys detailed balance is shown to 
give consistent performance over the entire range of learning rates. 
An analog of mutation is shown to require a learning rate which 
scales as the inverse system size, but is problem independent. 

1 Introduction 

There has been much recent work using probability models to search in optimization 
problems. The probability model generates candidate solutions to the optimization 
problem. It is updated so that the solutions generated should improve over time. 
Usually, the probability model is a parameterized graphical model , and updating 
the model involves changing the parameters and possibly the structure of the model. 
The general scheme works as follows, 

• Initialize the model to some prior (e.g. a uniform distribution); 

• Repeat 
- Sampling step: generate a data set by sampling from the probability 

model; 
- Testing step: test the data as solutions to the problem; 
- Selection step: create a improved data set by selecting the better 

solutions and removing the worse ones; 
- Learning step: create a new probability model from the old model 

and the improved data set (e.g. as a mixture of the old model and the 
most likely model given the improved data set); 

• until (stopping criterion met) 

Different algorithms are largely distinguished by the class of probability models 
used. For reviews of the approach including the different graphical models which 



have been used, see [3 , 6]. These algorithms have been called Estimation of Distri­
bution Algorithms (EDA); I will use that term here. 

EDAs are related to genetic algorithms; instead of evolving a population, a gen­
erative model which produces the population at each generation is evolved. A 
motivation for using EDAs instead of GAs is that is that in EDAs the structure of 
the graphical model corresponds to the form of the crossover operator in GAs (in 
the sense that a given graph will produce data whose probability will not change 
much under a particular crossover operator). If the EDA can learn the structure of 
the graph, it removes the need to set the crossover operator by hand (but see [2] 
for evidence against this). 

In this paper, a very simple EDA is considered on very simple problems. It is shown 
that the algorithm is extremely sensitive to the value of learning rate. The learning 
rate must vanish with the system size in a problem dependent way, and for some 
problems it has to vanish exponentially fast. Two correctives measures are consid­
ered: a new learning rule which obeys detailed balance in the space of parameters, 
and an operator analogous to mutation which has been proposed previously. 

2 The Standard PBIL Algorithm 

The simplest example of a EDA is Population-based Incremental Learning (PBIL) 
which was introduced by Baluja [1]. PBIL uses a probability model which is a 
product of independent probabilities for each component of the binary search space. 
Let Xi denote the ith component of X, an L-component binary vector which is a 
state of the search space. The probability model is defined by the L-component 
vector of parameters 'Y ~), where 'Yi(t ) denotes the probability that Xi = 1 at time 
t. 

The algorithm works as follows, 

• Initialize 'Yi(O) = 1/2 for all i; 

• Repeat 
- Generate a population of N strings by sampling from the binomial 

distribution defined by 1(t). 
- Find the best string in the population x*. 
- Update the parameters 'Yi(t + 1) = 'Yi(t) + a[xi - 'Yi (t)] for all i. 

• until (stopping criterion met) 

The algorithm has only two parameters, the size of the population N and the 
learning parameter a. 

3 The sensitivity of PBIL to the learning rate 

3.1 PBIL on a flat landscape 

The source of sensitivity of PBIL to the learning rate lies in its behavior on a flat 
landscape. In this case all vectors are equally fit , so the "best" vector x* is a random 
vector and its expected value is 

(1) 

(where (-) denotes the expectation operator) Thus, the parameters remain un­
changed on average. In any individual run, however, the parameters converge 



rapidly to one of the corners of the hypercube. As the parameters deviate from 
1/2 they will move towards a corner of the hypercube. Then the population gen­
erated will be biased towards that corner, which will move the parameters closer 
yet to that corner, etc. All of the corners of the hypercube are attractors which, 
although never reached, are increasingly attractive with increasing proximity. Let 
us call this phenomenon drift. (In population genetics, the term drift refers to the 
loss of genetic diversity due to finite population sampling. It is in analogy to this 
that the term is used here.) 

Consider the average distance between the parameters and 1/2, 

1 (1 )2 D(t) == L 2: "2 - 'Yi (t) 
• 

(2) 

Solving this reveals that on average this converges to 1/4 with a characteristic time 

T = -1/ 10g(1 - 0:2) ~ 1/0:2 for 0: ~ O. (3) 

The rate of search on any other search space will have to compete with drift. 

3.2 PBIL and the needle-in-the haystack problem 

As a simple example of the interplay between drift and directed search, consider the 
so-called needle-in-a-haystack problem. Here the fitness of all strings is 0 except for 
one special string (the "needle") which has a fitness of 1. Assume it is the string 
of all 1 'so It is shown here that PBIL will only find the needle if 0: is exponentially 
small, and is inefficient at finding the needle when compared to random search. 

Consider the probability of finding the needle at time t, denoted O(t) = rrf=1 'Yi(t). 
Consider times shorter than T where T is long enough that the needle may be 
found multiple times, but 0:2T -+ 0 as L -+ 00. It will be shown for small 0: that 
when the needle is not found (during drift), 0 decreases by an amount 0:2 LO/2, 
whereas when the needle is found, 0 increases by the amount o:LO. Since initially, 
the former happens at a rate 2L times greater than the latter, 0: must be less than 
2 - (L - 1) for the system to move towards the hypercube corner near the optimum, 
rather than towards a random corner. 

When the needle is not found, the mean of O(t) is invariant, (O(t + 1)) = O(t). 
However, this is misleading, because 0 is not a self-averaging quantity; its mean 
is affected by exponentially unlikely events which have an exponentially big effect. 
A more robust measure of the size of O(t) is the exponentiated mean of the log of 
O(t) . This will be denoted by [0] == exp (log 0). This is the appropriate measure of 
the central tendency of a distribution which is approximately log-normal [4], as is 
expected of O(t) early in the dynamics, since the log of 0 is the sum of approximately 
independent quantities. 

The recursion for 0 expanded to second order in 0: obeys 

{ 
[O(t)] [1 - 10:2 L] . 

[O(t + 1)] = [O(t)] [1 + ~L + ~'0:2 L(L - 1)] ; 
needle not found 

needle found. 

In these equations, 'Yi(t) has also been expanded around 1/2. 

(4) 

Since the needle will be found with probability O(t) and not found with probability 
1 - O(t), the recursion averages to, 

[O(t + 1)] = [O(t)] (1 - ~0:2 L) + [0(t)]2 [O:L - ~0:2 L(L + 1)] . (5) 



The second term actually averages to [D(t)] (D(t)) , but the difference between (D) 
and [D] is of order 0: , and can be ignored. 

Equation (5) has a stable fixed point at 0 and an unstable fixed point at 0:/2 + 
O( 0:2 L). If the initial value of D(O) is less than the unstable fixed point, D will 
decay to zero. If D(O) is greater than the unstable fixed point , D will grow. The 
initial value is D(O) = 2- £, so the condition for the likelihood of finding the needle 
to increase rather than decrease is 0: < 2-(£-1). 

1.1 ,-----~-~--~-~--,_________, 

120 

a 

Figure 1: Simulations on PBIL on needle-in-a-haystack problem for L = 8,10,11,12 
(respectively 0, +, *, 6). The algorithm is run until no parameters are between 0.05 
and 0.95, and averaged over 1000 runs. Left: Fitness of best population member at 
convergence versus 0:. The non-robustness of the algorithm is clear; as L increases, 
0: must be very finely set to a very small value to find the optimum. Right: As 
previous, but with 0: scaled by 2£. The data approximately collapses, which shows 
that as L increases, 0: must decrease like 2-£ to get the same performance. 

Figure 1 shows simulations of PBIL on the needle-in-a-haystack problem. These 
confirm the predictions made above, the optimum is found only if 0: is smaller than 
a constant times 2£. The algorithm is inefficient because it requires such small 0:; 
convergence to the optimum scales like 4£. This is because the rate of convergence 
to the optimum goes like Do:, both of which are 0(2-£). 

3.3 PBIL and functions of unitation 

One might think that the needle-in-the-haystack problem is hard in a special way, 
and results on this problem are not relevant to other problems. This is not be true, 
because even smooth functions have fiat subspaces in high dimensions. To see this, 
consider any continuous, monotonic function of unit at ion u, where u = t L~ Xi , the 
number of 1 's in the vector. Assume the the optimum occurs when all components 
are l. 

The parameters 1 can be decomposed into components parallel and perpendicular 
to the optimum. Movement along the perpendicular direction is neutral, Only 
movement towards or away from the optimum changes the fitness. The random 
strings generated at the start of the algorithm are almost entirely perpendicular to 
the global optimum, projecting only an amount of order 1/..JL towards the optimum. 

Thus, the situation is like that of the needle-in-a-haystack problem. The perpendic­
ular direction is fiat, so there is convergence towards an arbitrary hypercube corner 



with a drift rate, 
TJ.. '" a? 

from equation (3). Movement towards the global optimum occurs at a rate, 
a 

Til '" VL· 

(6) 

(7) 

Thus, a must be small compared to l/VL for movement towards the global optimum 
to win. 

A rough argument can be used to show how the fitness in the final population 
depends on a. Making use of the fact that when N random variables are drawn 
from a Gaussian distribution with mean m and variance u 2 , the expected largest 
value drawn is m + J2u2 10g(N) for large N (see, for example, [7]) , the Gaussian 
approximation to the binomial distribution, and approximating the expectation of 
the square root as the square root of the expectation yields, 

(u(t + 1)) = (u(t)) + aJ2 (v(t)) 10g(N), (8) 

where v(t) is the variance in probability distribution, v(t) = -b L i Ii (t)[l - li(t)]. 
Assuming that the convergence of the variance is primarily due to the convergence 
on the flat subspace, this can be solved as, 

1 Jlog(N) 
(u(oo)) ~ "2 + aV'iL . (9) 

The equation must break down when the fitness approaches one, which is where the 
Gaussian approximation to the binomial breaks down. 

0.9 0 .9 

0 .8 0 .8 

0.7 0 .7 

0 .6 
~ ~ 0 . 6 

~ 0.5 
I 

u.. 

'" 
NO.5 

0.4 
0.4 

0.3 

0 .3 
0 .2 

0.1 
0 .2 

0 20 0 0.2 0.4 0.6 0.8 
a 

Figure 2: Simulations on PBIL on the unitation function for L = 16,32,64,128,256 
(respectively D, 0, +, *, 6) . The algorithm is run until all parameters are closer to 
1 or 0 than 0.05, and averaged over 100 runs. Left: Fitness of best population 
member at convergence versus a. The fitness is scaled so that the global optimum 
has fitness 1 and the expected fitness of a random string is O. As L increases, a 
must be set to a decreasing value to find the optimum. Right: As previous, but 
with a scaled by VL. The data approximately collapses, which shows that as L 
increases, a must decrease like VL to get the same performance. The smooth curve 
shows equation (9). 

Simulations of PBIL on the unitation function confirm these predictions. PBIL fails 
to converge to the global optimum unless a is small compared to l/VL. Figure 2 
shows the scaling of fitness at convergence with aVL, and compares simulations 
with equation (9). 



4 Corrective 1 - Detailed Balance PBIL 

One view of the problem is that it is due to the fact that the learning dynamics 
does not obey detailed balance. Even on a flat space, the rate of movement of 
the parameters "Yi away from 1/2 is greater than the movement back. It is well­
known that a Markov process on variables x will converge to a desired equilibrium 
distribution 7r(x) if the transition probabilities obey the detailed balance conditions, 

w(x'lx)7r(x) = w(xlx')7r(x'), (10) 

where w(x'lx) is the probability of generating x' from x. Thus, any search algorithm 
searching on a flat space should have dynamics which obeys, 

w(x'lx) = w(xlx'), (11) 

and PEIL does not obey this. Perhaps the sensitive dependence on a would be 
removed if it did. 

There is a difficulty in modifying the dynamics of PBIL to satisfy detailed balance, 
however. PEIL visits a set of points which varies from run to run, and (almost) 
never revisits points. This can be fixed by constraining the parameters to lie on a 
lattice. Then the dynamics can be altered to enforce detailed balance. 

Define the allowed parameters in terms of a set of integers ni. The relationship 
between them is. 

{
I - ~(1 - a)ni, 

"Yi = !(1- a) lni l, 

2 ' 

ni > 0; 

ni < 0; 

ni = O. 

(12) 

Learning dynamics now consists of incrementing and decrementing the n/s by 1; 
when xi = 1(0) ni is incremented (decremented). 

Transforming variables via equation (12), the uniform distribution in "Y becomes in 
n, 

P (n) = _a_(I_ a) lnl. 
2-a 

4.0.1 Detailed balance by rejection sampling 

(13) 

One of the easiest methods for sampling from a distribution is to use the rejection 
method. In this , one has g(x'lx) as a proposal distribution; it is the probability of 
proposing the value x' from x. Then, A(x'lx) is the probability of accepting this 
change. Detailed balance condition becomes 

g(x'lx)A(x'lx)7r(x) = g(xlx')A(xlx')7r(x') . (14) 

For example, the well-known Metropolis-Hasting algorithm has 

A(x'lx) = min (1, :~~}:(~}I~})' (15) 

The analogous equations for PEIL on the lattice are, 

. [1- "Y(n+l) ] 
A(n + lin) mm "Y(n) (1 - a), 1 (16) 

A(n-lln) = min[{~;(~~(1-a),I]. (17) 

In applying the acceptance formula, each component is treated independently. Thus, 
moves can be accepted on some components and not on others. 



4.0.2 Results 

Detailed Balance PBIL requires no special tuning of parameters, at least when 
applied to the two problems of the opening sections. For the needle-in-a-haystack, 
simulations were performed for 100 values of (): between 0 and 0.4 equally spaced for 
L = 8,9,10,11,12; 1000 trials of each, population size 20, with the same convergence 
criterion as before, simulation halts when all "Ii'S are less than 0.05 or greater than 
0.95. On none of those simulations did the algorithm fail to contain the global 
optimum in the final population. 

For the function of unitation, Detailed Balance PBIL appears to always find the 
optimum if run long enough. Stopping it when all parameters fell outside the range 
(0.05,0.95), the algorithm did not always find the global optimum. It produced 
an average fitness within 1% of the optimum for (): between 0.1 and 0.4 and L = 
32, 64,128,256 over a 100 trials, but for learning rates below 0.1 and L = 256 the 
average fitness fell as low as 4% below optimum. However, this is much improved 
over standard PBIL (see figure 2) where the average fitness fell to 60% below the 
optimum in that range. 

5 Corrective 2 - Probabilistic mutation 

Another approach to control drift is to add an operator analogous to mutation in 
GAs. Mutation has the property that when repeatedly applied, it converges to a 
random data set. Muhlenbein [5] has proposed that the analogous operator ED As 
estimates frequencies biased towards a random guess. Suppose ii is the fraction of 
l's at site i. Then, the appropriate estimate of the probability of a 1 at site i is 

ii + m 
"Ii = 1 + 2m' (18) 

where m is a mutation-like parameter. This will be recognized as the maximum 
posterior estimate of the binomial distribution using as the prior a ,a-distribution 
with both parameters equal to mN + 1; the prior biases the estimate towards 1/2. 
This can be applied to PBIL by using the following learning rule, 

( 1) "Ii(t) + (): [x; - "Ii (t)] + m 
"Ii t + = 1 + 2m . (19) 

With m = 0 it gives the usual PBIL rule; when repeatedly applied on a flat space 
it converges to 1/2. 

Unlike Detailed Balance PBIL, this approach does required special scaling of the 
learning rate, but the scaling is more benign than in standard PBIL and is problem 
independent. It is determined from three considerations. First, mutation must 
be large enough to counteract the effects of drift towards random corners of the 
hypercube. Thus, the fixed point of the average distance to 1/2, (D(t + 1)) defined 
in equation (2) , must be sufficiently close to zero. Second, mutation must be small 
enough that it does not interfere with movement towards the parameters near the 
optimum when the optimum is found. Thus, the fixed point of equation (19) must be 
sufficiently close to 0 or 1. Finally, a sample of size N sampled from the fixed point 
distribution near the hypercube corner containing the optimum should contain the 
optimum with a reasonable probability (say greater than 1 - e-1). Putting these 
considerations together yields, 

logN m (): -- » - » -. 
L (): 4 

(20) 



5.1 Results 

To satisfy the conditions in equation 20, the mutation rate was set to m ex: a 2 , 

and a was constrained to be smaller than log (N)/L. For the needle-in-a-haystack, 
the algorithm behaved like Detailed Balance PElL. It never failed to find the opti­
mum for the needle-in-a-haystack problems for the sizes given previously. For the 
functions of unitation, no improvement over standard PBIL is expected, since the 
scaling using mutation is worse, requiring a < 1/ L rather than a < 1/..fL. How­
ever, with tuning of the mutation rate, the range of a's with which the optimum 
was always found could be increased over standard PBIL. 

6 Conclusions 

The learning rate of PBIL has to be very small for the algorithm to work, and 
unpredictably so as it depends upon the problem size in a problem dependent way. 
This was shown in two very simple examples. Detailed balance fixed the problem 
dramatically in the two cases studied. Using detailed balance, the algorithm consis­
tently finds the optimum over the entire range of learning rates . Mutation also fixed 
the problem when the parameters were chosen to satisfy a problem-independent set 
of inequalities. 

The phenomenon studied here could hold in any EDA, because for any type of 
model, the probability is high of generating a population which reinforces the move 
just made. On the other hand, more complex models have many more parame­
ters, and also have more sources of variability, so the issue may be less important. 
It would be interesting to learn how important this sensitivity is in EDAs using 
complex graphical models . 

Of the proposed correctives, detailed balance will be more difficult to generalize to 
models in which the structure is learned. It requires an understanding of algorithm's 
dynamics on a flat space, which may be very difficult to find in those cases. The 
mutation-type operator will easier to generalize, because it only requires a bias 
towards a random distribution. However, the appropriate setting of the parameters 
may be difficult to ascertain. 

References 

[1] S. Baluja. Population-based incremental learning: A method for integrating genetic 
search based function optimization and competive learning. Technical Report CMU­
CS-94-163, Computer Science Department , Carnegie Mellon University, 1994. 

[2] A. Johnson and J. L. Shapiro. The importance of selection mechanisms in distribution 

estimation algorithms. In Proceedings of the 5th International Conference on Artificial 
Evolution AE01, 2001. 

[3] P. Larraiiaga and J. A. Lozano. Estimation of Distribution Algorithms, A New Tool 
for Evolutionary Computation. Kluwer Academic Publishers, 2001. 

[4] Eckhard Limpert , Werner A. Stahel , and Markus Abbt . Log-normal distributions 
across the sciences: Keys and clues. BioScience, 51(5):341-352, 2001. 

[5] H. Miihlenbein. The equation for response to selection and its use for prediction. 
Evolutionary Computation, 5(3):303- 346, 1997. 

[6] M. Pelikan, D. E . Goldberg, and F. Lobo. A survey of optimization by building 
and using probabilistic models. Technical report, University of Illinois at Urbana­
Champaign, Illinois Genetic Algorithms Laboratory, 1999. 

[7] Jonathan L. Shapiro and Adam Priigel-Bennett. Maximum entropy analysis of genetic 
algorithm operators. Lecture Notes in Computer Science, 993:14- 24, 1995. 


