
On the Dirichlet Prior and Bayesian 
Regularization 

Harald Steck 
Artificial Intelligence Laboratory 

Massachusetts Institute of Technology 
Cambridge, MA 02139 

harald@ai.mit.edu 

Tommi S. Jaakkola 
Artificial Intelligence Laboratory 

Massachusetts Institute of Technology 
Cambridge, MA 02139 

tommi@ai.mit.edu 

Abstract 

A common objective in learning a model from data is to recover 
its network structure, while the model parameters are of minor in
terest. For example, we may wish to recover regulatory networks 
from high-throughput data sources. In this paper we examine how 
Bayesian regularization using a product of independent Dirichlet 
priors over the model parameters affects the learned model struc
ture in a domain with discrete variables. We show that a small 
scale parameter - often interpreted as "equivalent sample size" or 
"prior strength" - leads to a strong regularization of the model 
structure (sparse graph) given a sufficiently large data set. In par
ticular, the empty graph is obtained in the limit of a vanishing scale 
parameter. This is diametrically opposite to what one may expect 
in this limit, namely the complete graph from an (unregularized) 
maximum likelihood estimate. Since the prior affects the parame
ters as expected, the scale parameter balances a trade-off between 
regularizing the parameters vs. the structure of the model. We 
demonstrate the benefits of optimizing this trade-off in the sense 
of predictive accuracy. 

1 Introduction 

Regularization is essential when learning from finite data sets. In the Bayesian ap
proach, regularization is achieved by specifying a prior distribution over the parame
ters and subsequently averaging over the posterior distribution. This regularization 
provides not only smoother estimates of the parameters compared to maximum 
likelihood but also guides the selection of model structures. 

It was pointed out in [6] that a very large scale parameter of the Dirichlet prior can 
degrade predictive accuracy due to severe regularization of the parameter estimates. 
We complement this discussion here and show that a very small scale parameter 
can lead to poor over-regularized structures when a product of (conjugate) Dirichlet 
priors is used over multinomial conditional distributions (Section 3). Section 4 
demonstrates the effect of the scale parameter and how it can be calibrated. We 
focus on the class of Bayesian network models throughout this paper. 



2 Regularization of Parameters 

We briefly review Bayesian regularization of parameters. We follow the assump
tions outlined in [6] : multinomial sample, complete data, parameter modularity, 
parameter independence, and Dirichlet prior. Note that the Dirichlet prior over 
the parameters is often used for two reasons: (1) the conjugate prior permits an
alytical calculations, and (2) the Dirichlet prior is intimately tied to the desirable 
likelihood-equivalence property of network structures [6]. The Dirichlet prior over 
the parameters 8' I11"i is given by 

(1) 

where 8Xi l11"i pertains to variable X i in state Xi given that its parents IIi are in joint 
state 'Tri . The number of variables in the domain is denoted by n, and i = 1, ... , n. 
The normalization terms in Eq. 1 involve the Gamma function r(·). There are 
a number of approaches to specifying the positive hyper-parameters O:Xi ,11"i of the 
Dirichlet prior [2, 1, 6] ; we adopt the common choice, 

(2) 

where p is a (marginal) prior distribution over the (joint) states, as this assignment 
ensures likelihood equivalence of the network structures [6]. Due to lack of prior 
knowledge, p is often chosen to be uniform, p(Xi,'Tri ) = 1/ (IXil·IIIil), where lXii , 
IIIi l denote the number of (joint) states [1]. The scale parameter 0: of the Dirichlet 
prior is positive and independent of i, i.e. , 0: = L Xi ,11" i O:Xi ,11"i ' 

The average parameter value OXi l11" i ' which typically serves as the regularized pa
rameter estimate given a network structure m , is given by 

o = E [8] = N Xi ,11"i + O:Xi, 11"i 
Xi l11"i - p(Oxi l ~i I D,m) Xi l11"i N + ' 

7ri Q 7ri 

(3) 

where N Xi ,11" i are the cell-counts from data D; E[·] is the expectation. Positive 
hyper-parameters O:Xi, 11"i lead to regularized parameter estimates, i.e., the estimated 
parameters become "smoother" or " less extreme" when the prior distribution p is 
close to uniform. An increasing scale parameter 0: leads to a stronger regulariza
tion, while in the limit 0: -+ 0, the (unregularized) maximum likelihood estimate is 
obtained, as expected. 

3 Regularization of Structure 

In the remainder of this paper, we outline effects due to Bayesian regularization of 
the Bayesian network structure when using a product of Dirichlet priors. Let us 
briefly introduce relevant notation. 

In the Bayesian approach to structure learning, the posterior probability of the 
network structure m is given by p(mID) = p(Dlm)p(m)/p(D), where p(D) is the 
(unknown) probability of given data D , and p(m) denotes the prior distribution over 
the network structures; we assume p(m) > 0 for all m. Following the assumptions 
outlined in [6], including the Dirichlet prior over the parameters 8, the marginal 
likelihood p(Dlm) = Ep(O lm) [p(Dlm , 8)] can be calculated analytically. Pretending 
that the (i.i .d.) data arrived in a sequential manner , it can be written as 

N n N(k-l) + 0: k k 

p(Dlm) = II II X:(':~l) Xi ,11"i , 

k = l i=l N k + O:11"k 
7r i i 

(4) 



where N(k-l) denotes the counts implied by data D(k-l) seen before step k along 
the sequence (k = 1, ... , N). The (joint) state of variable Xi and its parents IIi 
occurring in the kth data point is denoted by xf, 7rf. In Eq. 4, we also decomposed 
the joint probability into a product of conditional probabilities according to the 
Bayesian network structure m. Eq. 4 is independent of the sequential ordering of 
the data points, and the ratio in Eq. 3 corresponds to the one in Eq. 4 when based 
on data D(k- l) at each step k along the sequence. 

3.1 Limit of Vanishing Scale-Parameter 

This section is concerned with the limit of a vanishing scale parameter of the Dirich
let prior, a -+ O. In this limit Bayesian regularization depends crucially on the 
number of zero-cell-counts in the contingency table implied by the data, or in other 
words, on the number of different configurations (data points) contained in the 
data. Let the Effective Number of Parameters (EP) be defined as 

n 

dk';) = l: [ l: I(Nxi,1rJ - l: I(N1rJ ], (5) 

where N Xi ,1ri' N1ri are the (marginal) cell counts in the contingency table implied 
by data D; m refers to the Bayesian network structure, and 1(·) is an indicator 
function such that I(z) = 0 if z = 0 and I(z) = 1 otherwise. When all cell 
counts are positive, EP is identical to the well-known number of parameters (P), 

dk';) = 4m ) = L:i(IXil - l)IIIil, which play an important role in regularizing the 
learned network structure. The key difference is that EP accounts for zero-cell
counts implied by the data. 

Let us now consider the behavior of the marginal likelihood (cf. Eq. 4) in the limit 
of a small scale parameter a. We find 

Proposition 1: Under the assumptions concerning the prior distribution outlined 
in Section 2, the marginal likelihood of a Bayesian network structure m vanishes in 
the limit a -+ 0 if the data D contain two or more different configurations. This 
property is independent of the network structure. The leading polynomial order is 
given by 

d(=l 
p(Dlm) "-' a EP as a -+ 0, (6) 

which depends both on the network structure and the data. However, the dependence 
on the data is through the number of different data points only. This holds inde
pendently of a particular choice of strictly positive prior distributions P(Xi ' IIi). If 
the prior over the network structures is strictly positive, this limiting behavior also 
holds for the posterior probability p( miD) . 

In the following we give a derivation of Proposition 1 that also facilitates the intuitive 
understanding of the result. First, let us consider the behavior of the Dirichlet 
distribution in the limit a -+ O. The hyper-parameters a X i ,1ri vanish when a -+ 0, 
and thus the Dirichlet prior converges to a discrete distribution over the parameter 
simplex in the sense that the probability mass concentrates at a particular, randomly 
chosen corner of the simplex containing B. I1ri (cf. [9]). Since the randomly chosen 
points (for different 7ri, i) do not change when sampling (several) data points from 
the distribution implied by the model , it follows immediately that the marginal 
likelihood of any network structure vanishes whenever there are two or more different 
configurations contained in the data. 

This well-known fact also shows that the limit a -+ 0 actually corresponds to a very 
strong prior belief [9, 12]. This is in contrast to many traditional interpretations 
where the limit a -+ 0 is considered as "no prior information", often motivated 
by Eq. 3. As pointed out in [9, 12], the interpretation of the scale parameter a 



as "equivalent sample size" or as the" strength" of prior belief may be misleading, 
particularly in the case where O:X i, 1ri < 1 for some configurations Xi, 7ri. A review 
of different notions of "noninformative" priors (including their limitations) can be 
found in [7]. Note that the noninformative prior in the sense of entropy is achieved 
by setting O:Xi ,1ri = 1 for each Xi, 7ri and for all i = 1, ... , n. This is the assignment 
originally proposed in [2]; however , this assignment generally is inconsistent with 
Eq. 2, and hence with likelihood equivalence [6]. 

In order to explain the behavior of the marginal likelihood in leading order of the 
scale parameter 0:, the properties of the Dirichlet distribution are not sufficient by 
themselves. Additionally, it is essential that the probability distribution described 
by a Bayesian network decomposes into a product of conditional probabilities, and 
that there is a Dirichlet prior pertaining to each variable for each parent configu
ration. All these Dirichlet priors are independent of each other under the standard 
assumption of parameter independence. Obviously, the ratio (for given k and i) in 
Eq. 4 can only vanish in the limit 0: --+ 0 if N(~- ~ = 0 while N(~- l) > 0; in other 

Xi , 7r i 7ri 

words, the parent-configuration 7rf must already have occurred previously along 
the sequence (7rf is "old"), while the child-state xf occurs simultaneously with this 
parent-state for the first time (xf, 7rf is "new"). In this case, the leading polyno
mial order of the ratio (for given k and i) is linear in 0:, assuming P(Xi' IIi) > 0; 
otherwise the ratio (for given k and i) converges to a finite positive value in the 
limit 0: --+ O. Consequently, the dependence of the marginal likelihood in leading 
polynomial order on 0: is completely determined by the number of different config
urations in the data. It follows immediately that the leading polynomial order in 
0: is given by EP (d. Eq. 5). This is because the first term counts the number of 
all the different joint configurations of Xi , IIi in the data, while the second term 
ensures that EP counts only those configurations where (xf, 7rf) is "new" while 7rf 
is "old". 

Note that the behavior of the marginal likelihood in Proposition 1 is not entirely 
determined by the network structure in the limit 0: --+ 0, as it still depends on the 
data. This is illustrated in the following example. First , let us consider two binary 
variables, Xo and Xl, and the data D containing only two data points, say (0,0) 
and (1,1). Given data D, three Dirichlet priors are relevant regarding graph ml, 
Xo --+ Xl, but only two Dirichlet priors pertain to the empty graph, mo. The 
resulting additional "flexibility" due to an increased number of priors favours more 
complex models: p(Dlmd ~ 0:, while p(Dlmo) ~ 0:2 . Second, let us now assume 
that all possible configurations occur in data D. Then we still have p(Dlmo) ~ 0:2 

for the empty graph. Concerning graph ml, however , the marginal likelihood now 
also involves the vanishing terms due to the two priors pertaining to BX1 lxo =o and 
BXl lxo=l, and it hence becomes p(Dlmd ~ 0:3 . 

This dependence on the data can be formalized as follows. Let us compare the 
marginal likelihoods of two graphs, say m+ and m - . In particular, let us consider 
two graphs that are identical except for a single edge, say A +- B between the 
variables A and B. Let the edge be present in graph m+ and absent in m-. The 
fact that the marginal likelihood decomposes into terms pertaining to each of the 
variables (d. Eq. 4) entails that all the terms regarding the remaining variables 
cancel out in the Bayes factor p(Dlm+)/p(Dlm-), which is the standard relative 
Bayesian score. With the definition of the Effective Degrees of Freedom (EDF)l 

(7) 

we immediately obtain from Proposition 1 that p(Dlm+)/p(Dlm- ) ~ o:dEDF in the 

INote that EDF are not necessarily non-negative. 



limit a -+ 0, and hence 

Proposition 2: Let m+ and m- be the two network structures as defined above. 
Let the prior belief be given according to Eq. 2. Then in the limit a -+ 0: 

I p(Dlm+) {-oo if d EDF > 0, ( ) 
og p(Dlm- ) -+ +00 if dEDF < O. 8 

The result holds independently of a particular choice of strictly positive prior distri
butions P(Xi' IIi). If the prior over the network structures is strictly positive, this 
limiting behavior also holds for the posterior ratio. 

A positive value of the log Bayes factor indicates that the presence of the edge 
A f- B is favored , given the parents IIA ; conversely, a negative relative score 
suggests that the absence of this edge is preferred. The divergence of this relative 
Bayesian score implies that there exists a (small) positive threshold value ao > 0 
such that, for any a < ao, the same graph(s) are favored as in the limit. 

Since Proposition 2 applies to every edge in the network, it follows immediately 
that the empty (complete) graph is assigned the highest relative Bayesian score 
when EDF are positive (negative). Regularization of network structure in the case 
of positive EDF is therefore extreme, permitting only the empty graph. This is 
precisely the opposite of what one may have expected in this limit, namely the 
complete graph corresponding to the unregularized maximum likelihood estimate 
(MLE). In contrast, when EDF are negative, the complete graph is favored. This 
agrees with MLE. 

Roughly speaking, positive (negative) EDF correspond to large (small) data sets. 
It is thus surprising that a small data set, where one might expect an increased 
restriction on model complexity, actually gives rise to the complete graph, while 
a large data set yields the - most regularized - empty graph in the limit a -+ O. 
Moreover, it is conceivable that a "medium" sized data set may give rise to both 
positive and negative EDF. This is because the marginal contingency tables implied 
by the data with respect to a sparse (dense) graph may contain a small (large) 
number of zero-cell-counts. The relative Bayesian score can hence become rather 
unstable in this case, as completely different graph structures are optimal in the 
limit a -+ 0, namely graphs where each variable has either the maximal number of 
parents or none. 

Note that there are two reasons for the hyper-parameters a Xi ,1fi to take on small 
values (cf. Eq. 2): (1) a small equivalent sample size a, or (2) a large number of 
joint states, i.e. IXi l· IIIil » a , due to a large number of parents (with a large 
number of states). Thus, these hyper-parameters can also vanish in the limit of a 
large number of configurations (x , 1f) even though the scale parameter a remains 
fixed. This is precisely the limit defining Dirichlet processes [4], which, analogously, 
produce discrete samples. With a finite data set and a large number of joint config
urations, only the typical limit in Proposition 2 is possible. This follows from the 
fact that a large number of zero-cell-counts forces EDF to be negative. The sur
prising behavior implied by Proposition 2 therefore does not carryover to Dirichlet 
processes. As found in [8], however, the use of a product of Dirichlet process priors 
in non parametric inference can also lead to surprising effects. 

When dEDF = 0, it is indeed true that the value of the log Bayes factor can converge 
to any (possibly finite) value as a -+ O. Its value is determined by the priors 
P(Xi ' IIi), as well as by the counts implied by the data. The value of the Bayes 
factor can be therefore easily set by adjusting the prior weights p(Xi' 1fi). 

3.2 Large Scale-Parameter 

In the other limiting case, where a -+ 00 , the Bayes factor approaches a finite value, 
which in general depends on the given data and on the prior distributions p(Xi' IIi). 
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Figure 1: The log Bayes factor (lBF) is depicted as a function of the scale parameter 
0:. It is assumed that the two variables A and B are binary and have no parents; 
and that the "data" imply the contingency table: NA= O,B= O = NA= l,B= l = 10 + z 
and NA=l,B=O = NA=O,B=l = 10 - z, where z is a free parameter determining the 
statistical dependence between A and B. The prior p(Xi,IIi ) was chosen to be 
uniform. 

This can be seen easily by applying the Stirling approximation in the limit 0: -+ 00 

after rewriting Eq. 4 in terms of Gamma functions (cf. also [2, 6]). When the 
popular choice of a uniform prior p(Xi,IIi ) is used [1], then 

p(Dlm+) 
log p(Dlm-) -+ 0 as 0:-+00, (9) 

which is independent of the data. Hence, neither the presence nor the absence of 
the edge between A and B is favored in this limit. Given a uniform prior over the 
network structures, p(m) =const, the posterior distribution p(mID) over the graphs 
thus becomes increasingly spread out as 0: grows, permitting more variable network 
structures. 

The behavior of the Bayes factor between the two limits 0: -+ 0 and 0: -+ 00 is exem
plified for positive EDF in Figure 1: there are two qualitatively different behaviors, 
depending on the degree of statistical dependence between A and B. A sufficiently 
weak dependence results in a monotonically increasing Bayes factor which favors the 
absence of the edge A +- B at any finite value of 0:. In contrast, given a sufficiently 
strong dependence between A and B, the log Bayes factor takes on positive values 
for all (finite) 0: exceeding a certain value 0:+ of the scale parameter. Moreover, 0:+ 

grows as the statistical dependence between A and B diminishes. Consequently, 
given a domain with a range of degrees of statistical dependences, the number of 
edges in the learned graph increases monotonically with growing scale parameter 0: 

when each variable has at most one parent (i. e., in the class of trees or forests). This 
is because increasingly weaker statistical dependencies between variables are recov
ered as 0: grows; the restriction to forests excludes possible "interactions" among 
(several) parents of a variable. As suggested by our experiments, this increase in 
the number of edges can also be expected to hold for general Bayesian network 
structures (although not necessarily in a monotonic way). 

This reveals that regularization of network structure tends to diminish with a grow
ing scale parameter. Note that this is in the opposite direction to the regularization 
of parameters (cf. Section 2). Hence, the scale parameter 0: of the Dirichlet prior 
determines the trade-off between regularizing the parameters vs. the structure of the 
Bayesian network model. 

If a uniform prior over the network structures is chosen, p(m) = const, the above 
discussion also holds for the posterior ratio (instead of the Bayes factor). The 
behavior is more complicated, however, when a non-uniform prior is assumed. For 
instance, when a prior is chosen that penalizes the presence of edges, the posterior 



favours the absence of an edge not only when the scale parameter is sufficiently 
small, but also when it is sufficiently large. This is apparent from Fig. 1, when the 
log Bayes factor is compared to a positive threshold value (instead of zero). 

4 Example 

This section exemplifies that the entire model (parameters and structure) has to 
be considered when learning from data. This is because regularization of model 
structure diminishes, while regularization of parameters increases with a growing 
scale parameter a of the Dirichlet prior , as discussed in the previous sections. 

When the entire model is taken into account, one can use a sensitivity analysis in 
order to determine the dependence of the learned model on the scale parameter 
a, given the prior p(Xi' IIi) (cf. Eq. 2). The influence of the scale parameter a 
on predictive accuracy of the model can be assessed by cross-validation or , in a 
Bayesian approach, prequential validation [11, 3]. Another possibility is to treat 
the scale parameter a as an additional parameter of the model to be learned from 
data. Hence, prior belief regarding the parameters e can then enter only through 
the (normalized) distributions P(Xi' IIi). Howeverl. note that this is sufficient to 
determine the (average) prior parameter estimate e (cf. Eq. 3) , i.e., when N = O. 
Assuming an (improper) uniform prior distribution over a, its posterior distribution 
is p(aID) ex: p(Dla), given data D. Then aD = argmaxaP(Dla), where p(Dla) = 
I:m P(Dla,m)p(m)2 can be calculated exactly if the summation is feasible (like in 
the example below). Alternatively, assuming that the posterior over a is strongly 
peaked, the likelihood may also be approximated by summing over the k most likely 
graphs m only (k = 1 in the most extreme case; empirical Bayes). Subsequently, 
model structure m and parameters B can be learned with respect to the Bayesian 
score employing aD. 

In the following, the effect of various values assigned to the scale parameter a is 
exemplified concerning the data set gathered from Wisconsin high-school students 
by Sewell and Shah [10]. This domain comprises 5 discrete variables, each with 
2 or 4 states; the sample size is 10,318. In this small domain, exhaustive search 
in the space of Bayesian network structures is feasible (29,281 graphs). Both the 
prior distributions p(m) for all m and P(Xi ' IIi) are chosen to be uniform. Figure 2 
shows that the number of edges in the graph with the highest posterior probability 
grows with an increasing value of the scale parameter, as expected (cf. Section 3). 
In addition, cross-validation indicates best predictive accuracy of the learned model 
at a ~ 100, ... ,300, while the likelihood p(Dla) takes on its maximum at aD ~ 69. 
Both approaches agree on the same network structure, which is depicted in Fig. 3. 
This graph can easily be interpreted in a causal manner, as outlined in [5].3 We 
note that this graph was also obtained in [5] due, however , to additional constraints 
concerning network structure, as a rather small prior strength of a = 5 was used. For 
comparison, Fig. 3 also shows the highest-scoring unconstraint graph due to a = 5, 
which does not permit a causal interpretation, cf. also [5]. This illustrates that 
the "right" choice of the scale parameter a of the Dirichlet prior , when accounting 
for both model structure and parameters, can have a crucial impact on the learned 
network structure and the resulting insight in the ("true") dependencies among the 
variables in the domain. 

2We assume that m and a are independent a priori, p(mla) = p(m). 
3Since we did not impose any constraints on the network structure, unlike to [5] , 

Markov-equivalence leaves the orientation of the edge between the variables IQ and CP 
unspecified. 



a a. XV 5 p(D la) 
p(D laD) 

5 6 0.045 10 ·w 

50 7 0.044 0.13 
100 7 0.040 0.05 
200 7 0.040 10- 14 

300 7 0.040 10-30 

500 7 0.042 10- 65 

1, 000 8 0.047 10-151 

Figure 2: As a function of a: number of 
arcs (a.) in the highest-scoring graph; 
average KL divergence in 5-fold cross
validation (XV 5), std= 0.006; likelihood 
of a when treated as an additional model 
parameter (aD = 69). 
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SES: socioeconomic status SEX: gender of student 
PE: parental encouragement CP: college plans 
IQ: intelligence quotient 

Figure 3: Highest-scoring (unconstraint) 
graphs when a = 5 (left) , and when a = 
46, ... ,522 (right). Note that the latter 
graph can also be obtained at a = 5 when 
additional constraints are imposed on the 
structure, cf. [5]. 
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