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Abstract 

We introduce efficient learning equilibrium (ELE), a normative ap­
proach to learning in non cooperative settings. In ELE, the learn­
ing algorithms themselves are required to be in equilibrium. In 
addition, the learning algorithms arrive at a desired value after 
polynomial time, and deviations from a prescribed ELE become ir­
rational after polynomial time. We prove the existence of an ELE 
in the perfect monitoring setting, where the desired value is the 
expected payoff in a Nash equilibrium. We also show that an ELE 
does not always exist in the imperfect monitoring case. Yet, it 
exists in the special case of common-interest games. Finally, we 
extend our results to general stochastic games. 

1 Introduction 

Reinforcement learning in the context of multi-agent interaction has attracted the 
attention of researchers in cognitive psychology, experimental economics, machine 
learning, artificial intelligence, and related fields for quite some time [8, 4]. Much 
of this work uses repeated games [3 , 5] and stochastic games [10, 9, 7, 1] as models 
of such interactions. 

The literature on learning in games in game theory [5] is mainly concerned with the 
understanding of learning procedures that if adopted by the different agents will 
converge at end to an equilibrium of the corresponding game. The game itself may 
be known; the idea is to show that simple dynamics lead to rational behavior, as 
prescribed by a Nash equilibrium. The learning algorithms themselves are not re­
quired to satisfy any rationality requirement; it is what they converge to, if adopted 
by all agents that should be in equilibrium. This is quite different from the clas­
sical perspective on learning in Artificial Intelligence, where the main motivation 
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for learning stems from the fact that the model of the environment is unknown. 
For example, consider a Markov Decision Process (MDP). If the rewards and tran­
sition probabilities are known then one can find an optimal policy using dynamic 
programming. The major motivation for learning in this context stems from the 
fact that the model (i.e. rewards and transition probabilities) is initially unknown. 
When facing uncertainty about the game that is played, game-theorists appeal to 
a Bayesian approach, which is completely different from a learning approach; the 
typical assumption in that approach is that there exists a probability distribution 
on the possible games, which is common-knowledge. The notion of equilibrium is 
extended to this context of games with incomplete information, and is treated as 
the appropriate solution concept. In this context, agents are assumed to be rational 
agents adopting the corresponding (Bayes-) Nash equilibrium, and learning is not 
an issue. 

In this work we present an approach to learning in games, where there is no known 
distribution on the possible games that may be played - an approach that appears to 
be much more reflective of the setting studied in machine learning and AI and in the 
spirit of work on on-line algorithms in computer science. Adopting the framework of 
repeated games, we consider a situation where the learning algorithm is a strategy 
for an agent in a repeated game. This strategy takes an action at each stage based 
on its previous observations, and initially has no information about the identity of 
the game being played. Given the above, the following are natural requirements for 
the learning algorithms provided to the agents: 

1. Individual Rationality: The learning algorithms themselves should be in 
equilibrium. It should be irrational for each agent to deviate from its 
learning algorithm, as long as the other agents stick to their algorithms, 
regardless of the what the actual game is. 

2. Efficiency: 

(a) A deviation from the learning algorithm by a single agent (while the 
other stick to their algorithms) will become irrational (i.e. will lead to 
a situation where the deviator 's payoff is not improved) after polyno­
mially many stages. 

(b) If all agents stick to their prescribed learning algorithms then the ex­
pected payoff obtained by each agent within a polynomial number of 
steps will be (close to) the value it could have obtained in a Nash 
equilibrium, had the agents known the game from the outset. 

A tuple of learning algorithms satisfying the above properties for a given class of 
games is said to be an Efficient Learning Equilibrium[ELE]. Notice that the learning 
algorithms should satisfy the desired properties for every game in a given class 
despite the fact that the actual game played is initially unknown. Such assumptions 
are typical to work in machine learning. What we borrow from the game theory 
literature is the criterion for rational behavior in multi-agent systems. That is , we 
take individual rationality to be associated with the notion of equilibrium. We also 
take the equilibrium of the actual (initially unknown) game to be our benchmark 
for success; we wish to obtain a corresponding value although we initially do not 
know which game is played. 



In the remaining sections we formalize the notion of efficient learning equilibrium, 
and present it in a self-contained fashion. We also prove the existence of an ELE 
(satisfying all of the above desired properties) for a general class of games (repeated 
games with perfect monitoring) , and show that it does not exist for another. Our 
results on ELE can be generalized to the context of Pareto-ELE (where we wish 
to obtain maximal social surplus), and to general stochastic games. These will be 
mentioned only very briefly, due to space limitations. The discussion of these and 
other issues, as well as proofs of theorems, can be found in the full paper [2]. 

Technically speaking, the results we prove rely on a novel combination of the so­
called folk theorems in economics, and a novel efficient algorithm for the punishment 
of deviators (in games which are initially unknown). 

2 ELE: Definition 

In this section we develop a definition of efficient learning equilibrium. For ease of 
exposition, our discussion will center on two-player repeated games in which the 
agents have an identical set of actions A. The generalization to n-player repeated 
games with different action sets is immediate, but requires a little more notation. 
The extension to stochastic games is fully discussed in the full paper [2]. 

A game is a model of multi-agent interaction. In a game, we have a set of players, 
each of whom performs some action from a given set of actions. As a result of the 
players' combined choices, some outcome is obtained which is described numerically 
in the form of a payoff vector, i.e., a vector of values, one for each of the players. 

A common description of a (two-player) game is as a matrix. This is called a game 
in strategic form. The rows of the matrix correspond to player 1 's actions and the 
columns correspond to player 2's actions. The entry in row i and column j in the 
game matrix contains the rewards obtained by the players if player 1 plays his ith 

action and player 2 plays his jth action. 

In a repeated game (RG) the players playa given game G repeatedly. We can view 
a repeated game, with respect to a game G, as consisting of infinite number of 
iterations, at each of which the players have to select an action of the game G. 
After playing each iteration, the players receive the appropriate payoffs, as dictated 
by that game's matrix, and move to a new iteration. 

For ease of exposition we normalize both players' payoffs in the game G to be non­
negative reals between ° and some positive constant Rmax . We denote this interval 
(or set) of possible payoffs by P = [0 , Rmax]. 

In a perfect monitoring setting, the set of possible histories of length t is (A2 X p2)t, 
and the set of possible histories, H, is the union of the sets of possible histories for all 
t 2 0, where (A2 x p 2)O is the empty history. Namely, the history at time t consists 
of the history of actions that have been carried out so far, and the corresponding 
payoffs obtained by the players. Hence, in a perfect monitoring setting, a player 
can observe the actions selected and the payoffs obtained in the past , but does not 
know the game matrix to start with. In an imperfect monitoring setup, all that a 
player can observe following the performance of its action is the payoff it obtained 
and the action selected by the other player. The player cannot observe the other 
player 's payoff. The definition of the possible histories for an agent naturally follows. 



Finally, in a strict imperfect monitoring setting, the agent cannot observe the other 
agents' payoff or their actions. 

Given an RG , a policy for a player is a mapping from H, the set of possible histories , 
to the set of possible probability distributions over A. Hence, a policy determines the 
probability of choosing each particular action for each possible history. A learning 
algorithm can be viewed as an instance of a policy. 

We define the value for player 1 (resp. 2) of a policy profile (1f, p), where 1f is a 
policy for player 1 and p is a policy for player 2, using the expected average reward 
criterion as follows. Given an RG M and a natural number T, we denote the 
expected T -step undiscounted average reward of player 1 (resp. 2) when the players 
follow the policy profile (1f,p), by U1 (M,1f,p,T) (resp. U2 (M,1f,p,T)). We define 
Ui(M, 1f, p) = liminfT--+oo Ui(M, 1f, p, T) for i = 1,2. 

Let M denote a class of repeated games. A policy profile (1f, p) is a learning equi­
librium w.r.t. M if'rh' , p',M E M, we have that U1 (M,1f',p) :::; U1 (M,1f,p), and 
U2 (M,1f,p') :::; U2 (M,1f,p). In this paper we mainly treat the class M of all re­
peated games with some fixed action profile (i.e. , in which the set of actions available 
to all agents is fixed). However, in Section 4 we consider the class of common-interest 
repeated games. We shall stick to the assumption that both agents have a fixed , 
identical set A of k actions. 

Our first requirement, then, is that learning algorithms will be treated as strategies. 
In order to be individually rational they should be the best response for one another. 
Our second requirement is that they rapidly obtain a desired value. The definition 
of this desired value may be a parameter, the most natural candidate - though not 
the only candidate - being the expected payoffs in a Nash equilibrium of the game. 
Another appealing alternative will be discussed later. 

Formally, let G be a (one-shot) game, let M be the corresponding repeated game, 
and let n(G) be a Nash-equilibrium of G. Then, denote the expected payoff of agent 
i in n(G) by Nl/i(n(G)). 

A policy profile (1f, p) is an efficient learning equilibrium with respect to the class 
of games M if for every E > 0, ° < 8 < 1, there exists some T > 0, where T is 
polynomial in ~,~, and k , such that with probability of at least 1 - 8: (1) For 
every t 2: T and for every repeated game M E M (and its corresponding one-shot 
game, G), Ui(M, 1f , p, t) 2: Nl/i(n(G)) - E for i = 1,2, for some Nash equilibrium 
n(G), and (2) If player 1 (resp. 2) deviates from 1f to 1f' (resp. from p to p') in 
iteration l, then U1 (M, 1f', p, l + t) :::; U1 (M, 1f, p, l + t) + E (resp. U2 (M, 1f, p', l + t) :::; 
U2 (M, 1f, p, l + t) + E) for every t 2: T. 

Notice that a deviation is considered irrational if it does not increase the expected 
payoff by more than E. This is in the spirit of E-equilibrium in game theory. This 
is done mainly for ease of mathematical exposition. One can replace this part of 
the definition, while getting similar results, with the requirement of "standard" 
equilibrium, where a deviation will not improve the expected payoff, and even with 
the notion of strict equilibrium, where a deviation will lead to a decreased payoff. 
This will require, however, that we restrict our attention to games where there 
exist a Nash equilibrium in which the agents' expected payoffs are higher than their 
probabilistic maximin values. 



The definition of ELE captures the insight of a normative approach to learning in 
non-cooperative settings. We assume that initially the game is unknown, but the 
agents will have learning algorithms that will rapidly lead to the values the players 
would have obtained in a Nash equilibrium had they known the game. Moreover , 
as mentioned earlier, the learning algorithms themselves should be in equilibrium. 
Notice that each agent's behavior should be the best response against the other 
agents' behaviors, and deviations should be irrational, regardless of what the actual 
(one-shot) game is. 

3 Efficient Learning Equilibrium: Existence 

Let M be a repeated game in which G is played at each iteration. Let A = 
{al' ... , ak} be the set of possible actions for both agents. Finally let there be 
an agreed upon ordering over the actions. The basic idea behind the algorithm is 
as follows. The agents collaborate in exploring the game. This requires k2 moves. 
Next, each agent computes a Nash equilibrium of the game and follows it. If more 
than one equilibrium exists, then the first one according to the natural lexicographic 
ordering is used. l If one of the agents does not collaborate in the initial exploration 
phase, the other agent "punishes" this agent. We will show that efficient punish­
ment is feasible. Otherwise, the agents have chosen a Nash-equilibrium, and it is 
irrational for them to deviate from this equilibrium unilaterally. 

This idea combines the so-called folk-theorems in economics [6], and a technique 
for learning in zero-sum games introduced in [1]. Folk-theorems in economics deal 
with a technique for obtaining some desired behavior by making a threat of em­
ploying a punishing strategy against a deviator from that behavior. When both 
agents are equipped with corresponding punishing strategies, the desired behav­
ior will be obtained in equilibrium (and the threat will not be materialized - as a 
deviation becomes irrational). In our context however , when an agent deviates in 
the exploration phase, then the game is not fully known, and hence punishment 
is problematic; moreover, we wish the punishment strategy to be an efficient algo­
rithm (both computationally, and in the time a punishment will materialize and 
make deviations irrational). These are addressed by having an efficient punish­
ment algorithm that guarantees that the other agent will not obtain more than 
its maximin value, after polynomial time, although the game is initially unknown 
to the punishing agent. The latter is based on the ideas of our R-max algorithm, 
introduced in [1]. 

More precisely, consider the following algorithm, termed the ELE algorithm. 

The ELE algorithm: 

Player 1 performs action ai one time after the other for k times, for all i = 1,2, ... , k. 
In parallel, player 2 performs the sequence of actions (al' ... ,ak) k times. 

If both players behaved according to the above then a Nash equilibrium of the cor­
responding (revealed) game is computed, and the players behave according 
to the corresponding strategies from that point on. If several Nash equilib­
ria exist, one is selected based on a pre-determined lexicographic ordering. 

lIn particular, the agents can choose the equilibrium selected by a fixed shared 
algorithm. 



If one of the players deviated from the above, we shall call this player the adversary 
and the other player the agent. Let G be the Rmax-sum game in which the 
adversary's payoff is identical to his payoff in the original game, and where 
the agent's payoff is Rmax minus the adversary payoffs. Let M denote the 
corresponding repeated game. Thus, G is a constant-sum game where the 
agent's goal is to minimize the adversary's payoff. Notice that some of 
these payoffs will be unknown (because the adversary did not cooperate 
in the exploration phase). The agent now plays according to the following 
algorithm: 

Initialize: Construct the following model M' of the repeated game M, where the 
game G is replaced by a game G' where all the entries in the game matrix 
are assigned the rewards (Rmax , 0).2 

In addition, we associate a boolean valued variable with each joint-action 
{assumed, known}. This variable is initialized to the value assumed. 

Repeat: 

Compute and Act: Compute the optimal probabilistic maximin of G' 
and execute it. 

Observe and update: Following each joint action do as follows : Let a be 
the action the agent performed and let a' be the adversary's action. 
If (a, a') is performed for the first time, update the reward associated 
with (a,a') in G', as observed, and mark it known. Recall- the agent 
takes its payoff to be complementary to the (observed) adversary's 
payoff. 

We can show that the policy profile in which both agents use the ELE algorithm is 
indeed an ELE. Thus: 

Theorem 1 Let M be a class of repeated games. Then, there exists an ELE 
w.r.t. M given perfect monitoring. 

The proof of the above Theorem, contained in the full paper, is non-trivial. It rests 
on the ability of the agent to "punish" the adversary quickly, making it irrational 
for the adversary to deviate from the ELE algorithm. 

4 Imperfect monitoring 

In the previous section we discussed the existence of an ELE in the context of the 
perfect monitoring setup. This result allows us to show that our concepts provide 
not only a normative, but also a constructive approach to learning in general non­
cooperative environments. An interesting question is whether one can go beyond 
that and show the existence of an ELE in the imperfect monitoring case as well. 
Unfortunately, when considering the class M of all games, this is not possible. 

Theorem 2 There exist classes of games for which an ELE does not exist given 
imperfect monitoring. 

2The value 0 given to the adversary does not play an important role here. 



Proof (sketch): We will consider the class of all 2 x 2 games and we will show 
that an ELE does not exist for this class under imperfect monitoring. 

Consider the following games: 

1. Gl: 

2. G2: 

M= ( 6, 
5, -100 

o 

M = (6, 9 
5,11 

0,100 ) 
1, 500 

0, 1) 
1, 10 

Notice that the payoffs obtained for a joint action in Gland G 2 are identical for 
player 1 and are different for player 2. 

The only equilibrium of G 1 is where both players play the second action, leading 
to (1,500). The only equilibrium of G2 is where both players play the first action, 
leading to (6,9). (These are unique equilibria since they are obtained by removal of 
strictly dominated strategies.) 

Now, assume that an ELE exists, and look at the corresponding policies of the 
players in that equilibrium. Notice that in order to have an ELE, we must visit the 
entry (6,9) most of the times if the game is G2 and visit the entry (1 ,500) most of 
the times if the game is G 1; otherwise, player 1 (resp. player 2) will not obtain a 
high enough value in G2 (resp. Gl), since its other payoffs in G2 (resp. Gl) are 
lower than that. 

Given the above, it is rational for player 2 to deviate and pretend that the game is 
always Gland behave according to what the suggested equilibrium policy tells it 
to do in that case. Since the game might be actually G 1, and player 1 cannot tell 
the difference, player 2 will be able to lead to playing the second action by both 
players for most times also when the game is G2, increasing its payoff from 9 to 10, 
contradicting ELE. I 

The above result demonstrates that without additional assumptions, one cannot 
provide an ELE under imperfect monitoring. However, for certain restricted classes 
of games, we can provide an ELE under imperfect monitoring, as we now show. 

A game is called a common-interest game if for every joint-action, all agents receive 
the same reward. We can show: 

Theorem 3 Let M c- i be the class of common-interest repeated games in which the 
number of actions each agent has is a. There exists an ELE for M c- i under strict 
imperfect monitoring. 

Proof (sketch): The agents use the following algorithm: for m rounds , each agent 
randomly selects an action. Following this, each agent plays the action that yielded 
the best reward. If multiple actions led to the best reward, the one that was used 
first is selected. m is selected so that with probability 1 - J every joint-action will 
be selected. Using Chernoff bound we can choose m that is polynomial in the size 
of the game (which is ak , where k is the number of agents) and in 1/ J. I 



This result improves previous results in this area, such as the combination of Q­
learning and fictitious play used in [3]. Not only does it provably converge in 
polynomial time, it is also guaranteed, with probability of 1 - J to converge to the 
optimal Nash-equilibrium of the game rather than to an arbitrary (and possibly 
non-optimal) Nash-equilibrium. 

5 Conclusion 

We defined the concept of an efficient learning equilibria - a normative criterion for 
learning algorithms. We showed that given perfect monitoring a learning algorithm 
satisfying ELE exists, while this is not the case under imperfect monitoring. In 
the full paper [2] we discuss related solution concepts, such as Pareto ELE. A 
Pareto ELE is similar to a (Nash) ELE, except that the requirement of attaining 
the expected payoffs of a Nash equilibrium is replaced by that of maximizing social 
surplus. We show that there fexists a Pareto-ELE for any perfect monitoring setting, 
and that a Pareto ELE does not always exist in an imperfect monitoring setting. In 
the full paper we also extend our discussion from repeated games to infinite horizon 
stochastic games under the average reward criterion. We show that under perfect 
monitoring, there always exists a Pareto ELE in this setting. Please refer to [2] for 
additional details and the full proofs. 
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