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Abstract

We address two open theoretical questions in Policy Gradient Reinforce-
ment Learning. The first concerns the efficacy of using function approx-
imation to represent the state action value function, (). Theory is pre-
sented showing that linear function approximation representations of @
can degrade the rate of convergence of performance gradient estimates
by a factor of O(M L) relative to when no function approximation of @
is used, where M is the number of possible actions and L is the number
of basis functions in the function approximation representation. The sec-
ond concerns the use of a bias term in estimating the state action value
function. Theory is presented showing that a non-zero bias term can
improve the rate of convergence of performance gradient estimates by
O(1 - (1/M)), where M is the number of possible actions. Experimen-
tal evidence is presented showing that these theoretical results lead to
significant improvement in the convergence properties of Policy Gradi-
ent Reinforcement Learning algorithms.

1 Introduction

Policy Gradient Reinforcement Learning (PGRL) algorithms have recently received at-
tention because of their potential usefulness in addressing large continuous reinforcement
Learning (RL) problems. However, there is still no widespread agreement on how PGRL
algorithms should be implemented. In PGRL, the agent’s policy is characterized by a set
of parameters which in turn implies a parameterization of the agent’s performance metric.
Thus if & € R represents a d dimensional parameterization of the agent’s policy and p is
a performance metric the agent is meant to maximize, then the performance metric must
have the form p(6) [6]. PGRL algorithms work by first estimating the performance gradient
(PG) 9p/06 and then using this gradient to update the agent’s policy using:

0t+1 = Ot + a% (1)
where « is a small positive step size. If the estimate of 0p/90 is accurate, then the agent can
climb the performance gradient in the § parameter space, toward locally optimal policies. In
practice, 9p/ 06 is estimated using samples of the state action value function Q). The PGRL
formulation is attractive because 1) the parameterization & of the policy can directly imply



a generalization over the agent’s state space (e.g., € can represent the adjustable weights
in a neural network approximation), which suggests that PGRL algorithms can work well
on very high dimensional problems [3]; 2) the computational cost of estimating 0p/08 is
linear in the number of parameters 8, which contrasts with the computational cost for most
RL algorithms which grows exponentially with the dimension of the state space; and 3) PG
algorithms exist which are guaranteed to give unbiased estimates of 9p/98 [6, 5, 4, 2, 1].

This paper addresses two open theoretical questions in PGRL formulations. In PGRL for-
mulations performance gradient estimates typically have the following form:

% = 1 ([QG1,a) ~bs0)] s [@(smar) ~b(51)]) @

where Q (si,a;) is the estimate of the value of executing action a; in state s; (i.e. the

state action value function), b(s;) the bias subtracted from Q (s;, a;) in state s;, T is the
number of steps the agent takes before estimating dp/96, and the form of the function
f(.) depends on the PGRL algorithm being used (see Section 2, equation (3) for the form
being considered here). The effectiveness of PGRL algorithms strongly depends on how

~

@ (si,a;) is obtained and the form of b(s;). The aim of this work is to address these
questions.

The first open theoretical question addressed here is concerned with the use of function
approximation (FA) to represent the state action value function @), which is in turn used
to estimate the performance gradient. The original formulation of PGRL [6], the REIN-
FORCE algorithm, has been largely ignored because of the slow rate of convergence of the
PG estimate. The use of FA techniques to represent ) based on its observations has been
suggested as a way of improving convergence properties. It has been proven that specific
linear FA formulations can be incorporated into PGRL algorithms, while still guaranteeing
convergence to locally optimal solutions [5, 4]. However, whether linear FA represen-
tations actually improves the convergence properties of PGRL is an open question. We
present theory showing that using linear basis function representations of @), rather than
direct observations of it, can slow the rate of convergence of PG estimates by a factor of
O(ML) (see Theorem 1 in Section 3.1). This result suggests that PGRL formulations
should avoid the use of linear FA techniques to represent (). In Section 4, experimental
evidence is presented supporting this conjecture.

The second open theoretical question addressed here is can a non-zero bias term b(s) in
(2) improve the convergence properties of PG estimates? There has been speculation
that an appropriate choice of b(s) can improve convergence properties [6, 5], but the-
oretical support has been lacking. This paper presents theory showing that if b(s) =
(1/M) >, Q(s,a), where M is the number actions, then the rate of convergence of the
PG estimate is improved by O(1 — (1/M)) (see Theorem 2 in Section 3.2). This sug-
gests that the convergence properties of PGRL algorithms can be improved by using a bias
term that is the average of () values in each state. Section 4 gives experimental evidence
supporting this conjecture.

2 TheRL Formulation and Assumptions

The RL problem is modeled as a Markov Decision Process (MDP). The agent’s state at time
t € {1,2,..}isgivenby s; € S, S C RL. Ateach time step the agent chooses from a finite
set of M > 1 actions a; € A = ay, ..., apr and receives a reward r; € . The dynamics of

the environment are characterized by transition probabilities P%, = Pr{si1 = s|s =
s,atr = a} and expected rewards R% = E{r¢t+1|st = s,a; = a}, VS,s' € S,a € A. The
policy followed by the agent is characterized by a parameter vector § € R¢, and is defined
by the probability distribution 7 (s,a;8) = Pr{a; = a|s; = s;6}, Vs € S,a € A. We



assume that 7 (s, a; 6) is differentiable with respect to 6.

We use the Policy Gradient Theorem of Sutton et al. [5] and limit our analysis to the start
state discount reward formulation. Here the reward function p(7) and state action value
function Q™ (s, a) are defined as:

o0 o0
p(m) = E{ S Aty 30,77} , Q" (s,a) = E{ S ARtk s = 8,00 = a,ﬂ}
i=1 F=1

where 0 < v < 1. Then the exact expression for the performance gradient is:

Op M o (s,a;;6)

6= ijd (s);T (Q" (s,0:) = b(s)) ©)
where d™ (s) = > i, v Pr{s; = s| so,m} and b(s) € R.
This policy gradient formulation requires that the state-action value function, @™, under

the current policy be estimated. This estimate, Q~, is derived using the observed value
Qr, (s,a;). We assume that Q7, - (s, a;) has the following form:

ngs (Saai) = Qﬂ (saai) +E(8aai) .
where ¢ (s, a;) has zero mean and finite variance o2 ,.. Therefore, if Q™ (s,a;) is an es-
timate of Q™ (s, a;) obtained by averaging IV observations of Q7 (s, a;), then the mean

and variance are given by:

E[Q7 (s,0)] = Q7 (s,ai), V[Q (s,00)] = B @)
In addition, we assume that Q7, (s, a;) are independently distributed. This is consistent
with the MDP assumption.

3 Rate of Convergence Results

Before stating the convergence theorems, we define the following:

2 2 2 : 2
ag = max ag . g_. — min g .
max - sesie{t,..,M} %7 Tmin 8,04 (®)

s€S,ie{l,...,M}
where o2 . is defined in (4) and
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Consider the PIFA algorithm [5] which uses a basis function representation for estimated
state action value function, Q™, of the following form:

L
Q" (s,a:) = [T, (8) = D Way 1Pas i (5) (7)
=1

where w,,; ; € R are weights and ¢, ; (s) are basis functions defined in s € RP. If the
weights w,, ; are chosen based using the observed Q7. (s, a;), and the basis functions,
¢a;,1 (8), satisfy the conditions defined in [5, 4], then the performance gradient is given by:

M .
% =y ar(s)y, il gy @

s i=1
The following theorem establishes bounds on the rate of convergence for this representation
of the performance gradient.



Theorem 1: Let % be an estimate of (8) obtained using the PIFA algorithm and the basis
function representation (7). Then, given the assumptions defined in Section 2 and equations
(5) and (6), the rate of convergence of a PIFA algorithm is bounded below and above by:
ML dp ML
len N S V 60F S Cmax N (9)
where L is the number of basis functions, M is the number of possible actions, and NV is
the number of independent estimates of the performance gradient.

Proof: See Appendix.

3.2 Rateof Convergence of Direct Sampling Algorithms

In the previous section, the observed Q7, (s, a;) are used to build a linear basis function
representation of the state action value function, Q™ (s, a;), which is in turn used to es-
timate the performance gradient. In this section we establish rate of convergence bounds
for performance gradient estimates that directly use the observed Q7, (s, a;) without the
intermediate step of building the FA representation. These bounds are established for the
conditions b(s) = (1/M) )", Q(s,a) and b(s) = 0in (3).

Theorem 2: Let % be a estimate of (3), be obtained using direct samples of Q™. Then,
if b(s) = 0, and given the assumptions defined in Section 2 and equations (5) and (6), the
dp .
rate of convergence of 27 is bounded by: N
1 op 1
min 37 < | < max
C N S Vv 20 | = C
where N is the number of independent estimates of the performance gradient. If b(s) # 0
is defined as:

(10)

M
1
b(s) =17 > Q" (5,9)) (11)
j=1
then the rate of convergence of the performance gradient %b is bounded by:
1 1 ap 1 1
N —_ )< L IS — R
Cuine (1-37) <V [6% < oy (1- 37 12

where M is the number of possible actions.
Proof: See Appendix.

Thus comparing (12) and (10) to (9) one can see that policy gradient algorithms such as
PIFA which build FA representations of ¢) converge by a factor of O(M L) slower than
algorithms which directly sample @. Furthermore, if the bias term is as defined in (11),
the bounds on the variance are further reduced by O(1 — (1/M)). In the next section
experimental evidence is given showing that these theoretical consideration can be used to
improve the convergence properties of PGRL algorithms.

4 Experiments

The Simulated Environment: The experiments simulate an agent episodically interacting
in a continuous two dimensional environment. The agent starts each episode in the same
state s;, and executes a finite number of steps following a policy to a fixed goal state sg.
The stochastic policy is defined by a finite set of Gaussians, each associated with a specific
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Figure 1: Simulation Results

action. The Gaussian associated with action a., is defined as:

0 (84 — cmd)2
gun (5) = exp [ = 3 Fe = Cma).

i1 Umd
where s = (s1,...,sp) € RP, is the agents state, ¢,,1, ..., cup is the Gaussian center,
and v, ..., D IS the variance along each state space dimension. The probability of
executing action a, in state s is
gm (8)

M
; g; (s)

where § = (Cll, vy Cldy V115 --oyVidy +o-s CM 15 -y CMD > UM1 5 ---) 'UMD) defines the pOllcy pa-
rameters that dictate the agent’s actions. Action a; directs the agent toward the goals state
sa, While the remaining actions a,, (for m = 2, ..., M) direct the agent towards the corre-
sponding Gaussian center ¢,,1, ---, CmD-

(8, am;0) =

Noise is modeled using a uniform random distribution between (0, 1) denoted by U (0, 1),
such that the noise in dimension s is given by:

59% = 54+ 6 (U (0,1) — 0.5)
where § > 0 is the magnitude of the noise, s5°% is the state the agent observes and uses to
choose actions, and s is the actual state of the agent.

The agent receives a reward of +1 when it reaches the goal state, otherwise it receives a

reward of:
D

2
S
= —0.0lexp|— ) ¢
- -ome -3 |
Thus the agent gets negative rewards the closer it gets to the origin of the state space, and a
positive reward whenever it reaches the goal state.

Implementation of the PGRL algorithms: All the PGRL formulations studied here re-
quire observations (i.e. samples) of the state action value function. Q7,_ (s, a;) is sampled
by executing action a; in state s and thereafter following the policy. In the episodic formu-
lation, where the agent executes a maximum of T steps during each episode, at the end of
each episode, Q7. (s¢, as) for step ¢ can be evaluated as follows:

oo

Qobs (51, a1) = Z’Yk_th+k|St =s,a; =a,m
k=1

Thus, given that the agent executes a complete episode ((s1,a1),...,(sT,ar))
following the policy =, at the completion of the episode we can calculate
(Qhy(81,01), ..., Q% (sT,a7)). This gives samples of T state action value pairs. Equa-
tion (3) tells us that we require a total of MT state action value function observations to
estimate a performance gradient (assuming the agent can execute M actions). Therefore,

we can obtain the remaining (M — 1)T observations of Q7, = by sending the agent out on



(M — 1)T epsisodes, each time allowing it to follow the policy  for all T' steps, with the
exception that action a; = a,, is executed when Q7, (s¢, a,,) is being observed. This sam-
pling procedure requires a total of (A —1)T" — 1 episodes and gives a complete set of Q7,
state action pairs for any path ((s1,a1), ---, (s7,ar)). For the direct sampling algorithms
in Section 3.2, these observations are directly used to estimate the performance gradient.
For the linear basis function based PGRL algorithm in Section 3.1, these observations are
first used to calculate the w,, ; as defined in [5, 4], and then the performance gradient is
calculated using (8).

Experimental Results: Figure 1b shows a plot of average V[0p/d6r]/V [0p/06] values
over 10,000 estimates of the performance gradient. For each estimate, the goal state, start
state, and Gaussian centers are all chosen using a uniform random distribution (—1,1);
the Gaussian variances are sampled from a uniform distribution (0.1,1). As predicted by
Theorem 1 in Section 3.1 and Theorem 2 in Section 3.2, as the number of actions M in-
creases, this ratio also increases. Note that Figure 1b plots average variance ratios, not the
bounds in variance given in Theorem 1 and Theorem 2 (which have not been experimen-
tally sampled), so the M L ratio predicted by the theorems is supported by the increase in

the ratio as M increases. Figure 1c shows a plot of average V'[0p/060]/V [0p/00,] values
over 10,000 estimates of the performance gradient. As above, for each estimate, the goal
state, start state, and Gaussian centers are all chosen using a uniform random distribution
(—1,1); the Gaussian variances are sampled from a uniform distribution (0.1, 1). This also
follows the predicted trends of Theorem 1 and Theorem 2. Finally, Figure 1a shows the
average reward over 100 runs as the three algorithms converge on a two action problem.
Each algorithm is given the same number of Q7,  samples to estimate the gradient before

each update. Because 6/;/60,, has the least variance, it allows the policy 7 to converge

to the highest reward value p(7). Similarly, because 5;)/60F has the highest variance, its
policy updates converge to the worst p(). Note that because all three algorithms will con-
verge to the same locally optimal policy given enough samples of Q7, , Figure 1a simply

demonstrates that 57)/60F requires more samples than 5;/60, which in turn requires more
samples than 8p/00,.

5 Conclusion

The theoretical and experimental results presented here indicate that how PGRL algorithms
are implemented can substantially affect the number of observations of the state action
value function (Q)) needed to obtain good estimates of the performance gradient. Further-
more, they suggest that an appropriately chosen bias term, specifically the average value of
@ over all actions, and the direct use of observed () values can improve the convergence of
PGRL algorithms. In practice linear basis function representations of @) can significantly
degrade the convergence properties of policy gradient algorithms. This leaves open the
question of whether any (i.e. nonlinear) function approximation representation of value
functions can be used to improve convergence of such algorithms.
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Appendix: Proofsof Theorems1 and 2

Proof of Theorem 1. Consider the definition of f7. given in (7). In [5] it is shown that
there exist w,, ; and ¢, 4 (s) such that:

B[S 03 2 - (03 2D g | o

i=1 i=1

(13)
Let gzobs be the observation of £ (3) after a single episode. Using (13), we get the
following:
M
Bl =TT ) 2 B () = 5+ e
[ Z_M on(s,a;i;0)
= Ed’r( )Z: 5 Q”(S,az’)] te
- Zd’f()ZlM <>]+e
=[S0 ) F G0 S b ()] o
87r(sa 0) L&
= [ 5 s 5 PG (5) G () ) | +€ = 0 3 wana B+ ¢
Li=11=1 i=11=1

where the basis functions ®;; have the form

®; = (Z de (5) Pai i (3)>

S

and E[e] = 0, with variance

_y |9
V[E] =V [% o

Denotlng 57 - s the least squares (LS) estimate of (3), its form is given by:

Z Br ¥ (14)

where 3, are LS estimates of the ML Welghts We, ; and ¥y, correspond to the M L basis
functions ®;;. Then, it can be shown that any linear system of the type given in (14) has a
rate of convergence given by:

— M 2
dp | ML _ ML N2 or (s,a;6) 5
v [OQF] = FVE= T @ or Y (M) o
Substituting (5) and (6) into the above equation completes the proof. O

| =S @y > (2rlestys

i=1



Proof of Theorem 2: We prove equation (10) first. For N estimates of the performance
gradient, we get NV independent samples of each Q7, . (s, a;). These examples are averaged

and therefore: u
on (s,a;;0)
— dr [ag2) m i
g (8) ; 60 Q (87 a )
Because each Q7 (s, a;) is independently distributed, the variance of the estimate is given

by
- or (s,a;;0) 2 9
N Z (d ;( 90 ) Os,a; (15)
Given (5) the worst rate of convergence is bounded by:

57) sk (O (s,ai;0)\° s M 1
< w R S et e - = _
V [80] = l; (d (S)) Z:ZI 60 Omax N CmaxN
A similarly argument applies to the lower bound on convergence completing the proof for
(10). Following the same argument for (12), we have

om (s,a;;0)\ > "
EJ Nzwr ZCJ£J) ks% MZQS%]

=1
Where
1 M M—-1 1 u
ViQ™ (s,a:) — 7 ;Q" (s,a;5)| =V |5 Q" (s,a:) — 7 ; Q" (s, a5)
” i
_(M=1\2 2 ud 132 2
_( M ) 0s,a + Z:I(M) Usa_,
J:
J#i (16)
Given (5) the variance V|| on the far left of (16) is bounded by
M—1\2 Ml M—1\2 2 M1\ o
(%5t) o ; (&) o2, = (43) Ohax t ];1 (%) Tmax
J#i max 5 J#i 5
= (M) + (M = 1) (4)°) o2
- 1 L) Urznax

Plugging the above into (16) and inserting C'y,4., from (6) completes the proof for the upper
bound. The proof for the lower bound in the variance follows similar reasoning. O



