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Abstract 

We present an information-geometric measure to systematically 
investigate neuronal firing patterns, taking account not only of 
the second-order but also of higher-order interactions. We begin 
with the case of two neurons for illustration and show how to test 
whether or not any pairwise correlation in one period is significantly 
different from that in the other period. In order to test such a hy­
pothesis of different firing rates, the correlation term needs to be 
singled out 'orthogonally' to the firing rates, where the null hypoth­
esis might not be of independent firing. This method is also shown 
to directly associate neural firing with behavior via their mutual 
information, which is decomposed into two types of information, 
conveyed by mean firing rate and coincident firing, respectively. 
Then, we show that these results, using the 'orthogonal' decompo­
sition, are naturally extended to the case of three neurons and n 
neurons in general. 

1 Introduction 

. 
In 

Based on the theory of hierarchical structure and related invariant decomposition 
of interactions by information geometry [3], the present paper briefly summarizes 
methods useful for systematically analyzing a population of neural firing [9]. 

Many researches have shown that the mean firing rate of a single neuron may carry 
significant information on sensory and motion signals. Information conveyed by 
populational firing, however, may not be only an accumulation of mean firing rates. 
Other statistical structure, e.g., coincident firing [13, 14], may also carry behavioral 
information. One obvious step to investigate this issue is to single out a contribution 
by coincident firing between two neurons, i.e., the pairwise correlation [2, 6]. 

In general , however, it is not sufficient to test a pairwise correlation of neural firing, 
because there can be triplewise and higher correlations. For example, three variables 
(neurons) are not independent in general even when they are pairwise independent. 

We need to establish a systematic method of analysis, including these higher-order 
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correlations [1, 5,7, 13] . We propose one approach, the information-geometric mea­
sure that uses the dual orthogonality of the natural and expectation parameters in 
exponential family distributions [4]. We represent a neural firing pattern by a binary 
random vector x. The probability distribution of firing patterns can be expanded 
by a log linear model, where the set {p( x)} of all the probability distributions forms 
a (2n - I)-dimensional manifold 8 n. Each p(x) is given by 2n probabilities 

pi1···in=Prob{X1=i1,···,Xn=in}, ik=O,I, subjectto L Pi1···in=1 
il ,"',in 

and expansion in log p( x) is given by 

logp(x) = L BiXi + L BijXiXj + L BijkXiXjXk··· + B1 ... nX1 ... Xn - 'Ij;, 
i<j i<j<k 

where indices of Bijk, etc. satisfy i < j < k, etc. We can have a general theory of 
this n neuron case [3, 9], however , to be concrete given the limited space, we mainly 
discuss two and three neuron cases in the present paper. Our method shares some 
features with previous studies (e.g. [7]) in use of the log linear model. Yet, we make 
explicit use of the dual orthogonality so that the method becomes more transparent 
and more systematic. 

In the present paper, we are interested in addressing two issues: (1) to analyze corre­
lated firing of neurons and (2) to connect such a technique with behavioral events. 
In (1), previous studies often assumed independent firing as the null hypothesis. 
However, for example, when we compare firing patterns in two periods, as control 
and 'test' periods, there may exist a weak correlation in the control period. Hence, 
benefiting from the 'orthogonal' coordinates, we develop a method applicable to the 
null hypothesis of non-independent firing, irrespective of firing rates. It is equally 
important to relate such a method with investigation of behavioral significance as 
(2). We show that we can do so, using orthogonal decomposition of the mutual 
information (MI) between firing and behavior [11, 12]. 

In the following , we discuss first the case of two neurons and then the case of three 
neurons , demonstrating our method with artificial simulated data. The validity of 
our method has been shown also with experimental data[9, 10] but not shown here 
due to the limited space. 

2 Information-geometric measure: case of two neurons 

We denote two neurons by Xl and X 2 (Xi = 1, ° indicates if neuron i has a spike or 
not in a short time bin). Its joint probability p(x), x = (X1,X2), is given by Pij = 
Prob{x1 = i;X2 = j} > 0, i,j = 0, 1. Among four probabilities, {POO ,P01,P10,Pl1}, 
only three are free. The set of all such distributions of x forms a three-dimensional 
manifold 8 2. Any three of Pij can be used as a coordinate system of 8 2. 

There are many different coordinate systems of 8 2 . The coordinates of the expec­
tation parameters, called 17-coordinates, 'TI = (171,172,1712), is given by 

17i = Prob {Xi = I} = E [Xi], i = 1,2, 173 = 1712 = E [X1 X2] = P12, 

where E denotes the expectation and 17i and 1712 correspond to the mean firing rates 
and the mean coincident firing, respectively. 

As other coordinate systems, we can also use the triplet, (171,172, Cov [Xl, X 2]) , where 
Cov [Xl , X 2] is the covariance,and/or the triplet (171,172, p), where p is the correlation 
coefficient (COR), p = J '112 -,/11 '12 , often called N-JPSTH [2]. 
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Which quantity would be convenient to represent the pairwise correlational com­
ponent? It is desirable to define the degree of the correlation independently from 
the marginals (171,172), To this end, we use the 'orthogonal' coordinates (171 , 172 , B), 
originating from information geometry of 8 2 , so that the coordinate curve of B is 
always orthogonal to those of 171 and 172. 

The orthogonality of two directions in 8 2 (8n in general) is defined by the Rieman­
nian metric due to the Fisher information matrix [8, 4]. Denoting any coordinates 
in 8 n by ~ = (6, ... , ~n)' the Fisher information matrix G is given by 

(1) 

where l (x;~) = logp (x; ~). The orthogonality between ~i and ~j is defined by 

9ij(~) = O. In case of 8 2 , we desire to have E [tel (X ;171 , 172, B) 8~il(x;171'172,B)] = 

o (i = 1, 2). When B is orthogonal to (171, 172), we say that B represents pure 
correlations independently of marginals. Such B is given by the following theorem. 

Theorem 1. The coordinate 

B = log PuPoo (2) 
P01PlO 

is orthogonal to the marginals 171 and 172 . 

We have another interpretation of B. Let's expand p(x) by logp(x) = L;=l BiXi + 
B12X1X2 - 'IjJ . Simple calculation lets us get the coefficients, B1 = log Pia, B2 = paa 
log EQl, 'IjJ = -logpoo, and B = B12 (as Eq 2). The triplet () = (B1' B2, B12 ) forms paa 
another coordinate system, called the natural parameters, or B-coordinates. We 
remark that B12 is 0 when and only when Xl and X 2 are independent. 

The triplet 
C == (171,172,B12 ) 

forms an 'orthogonal' coordinate system of 8 2 , called the mixed coordinates [4]. 

We use the Kullback-Leibler divergence (KL) to measure the discrepancy between 

two probabilities p(x) and q(x) , defined by D[p:q] = LxP(x)log~t~}. In the 
following, we denote any coordinates of p by e etc (the same for q). Using the 
orthogonality between 17- and B-coordinates, we have the decomposition in the KL. 

Theorem 2. 

D [p : q] = D [p : r*] + D [r* : q], D [q : p] = D [q : r**] + D [r** : p] , (3) 

where r* and r** are given by Cr > = (17f, 17~, Bj) and Cr » = (17f, 17g, B~), respectively. 

The squared distance ds 2 between two nearby distributions p(x , ~) and p(x,~, +d~) 
is given by the quadratic form of d~, 

ds2 = L 9ij(~)d~id~j, 
i,jE(1,2,3) 

which is approximately twice the KL, i.e. , ds 2 ~ 2D [P(x , ~) : p(x,~ + ~)]. 
Now suppose ~ is the mixed coordinates C. Then, the Fisher information matrix 

[ gll gl2 0 1 
is of the form gfj = gf2 g~2 0 and we have ds2 = dsi + ds~, where dsi = 

o 0 g~3 
g~3(dB3) 2, ds~ = Li,j E(1,2) 9fjd17id17j, corresponding to Eq. 3. 



This decomposition comes from the choice of the orthogonal coordinates and gives 
us the merits of simple procedure in statistical inference. First, let us estimate 
the parameter TI = (1}1,1}2) and B from N observed data Xl, ... , XN. The maxi­
mum likelihood estimator (mle) ( , which is asymptotically unbiased and efficient, 
is easily obtained by 1)' . = l..#{x· = I} and 8 = log fh?(1-=-fh-.ib+~12) using 

• N • (1]1-1]12)(1]2-1]12) , 

fj12 = tt#{XIX2 = I}. The covariance of estimation error, f::J.TI and f::J.B, is given 

asymptotically by Cov [ ~~ ] = ttGZ1. Since the cross terms of G or G-1 vanish 

for the orthogonal coordinates, we have Cov [f::J.TI, f::J.B] = 0, implying that the es­
timation error f::J.TI of marginals and that of interaction are mutually independent. 
Such a property does not hold for other non-orthogonal parameterization such as 
the COR p, the covariance etc. Second, in practice, we often like to compare many 
spike distributions, q(x(t)) (i.e, (q(t)) for (t = 1", T), with a distribution in the 
control period p( x) , or (P. Because the orthogonality between TI and B allows us to 
treat them independently, these comparisons become very simple. 

These properties bring a simple procedure of testing hypothesis concerning the null 
hypothesis 

Ho : B = Bo against (4) 
where Bo is not necessarily zero, whereas Bo = 0 corresponds to the null hypothesis 
of independent firing , which is often used in literature in different setting. Let the 
log likelihood of the models Ho and HI be, respectively, 

lo = maxlogp(Xl ' ... , XN ; TI , Bo) and h = maxlogp(Xl' ... , XN; TI, B). 
TI TI,e 

The likelihood ratio test uses the test statistics A = 2log ~. By the mle with respect 
to TI and e, which can be performed independently, we have 

lo = logp(x ,r"Bo), (5) 

where r, are the same in both models. A similar situation holds in the case of testing 
TI = Tlo against TI =I Tlo for unknown B. 

Under the hypothesis H o, A is approximated for a large N as 

A = 2 t log P(Xi;~' B~) ';::;j N gi3 (8 - BO)2 '" X2(1). 
i=l p(Xi; TI, B) 

(6) 

Thus, we can easily submit our data to a hypothetical testing of significant coinci­
dent firing against null hypothesis of any correlated firing, independently from the 
mean firing rate modulation1 . 

We now turn to relate the above approach with another important issue, which is 
to relate such a coincident firing with behavior. Let us denote by Y a variable of 
discrete behavioral choices. The MI between X = (X1 ,X2 ) and Y is written by 

[ p(x,y)] 
J(X, Y) = Ep(x ,y) log p(x)p(y) = Ep(Y) [D [P(Xly) : p(X)]]. 

Using the mixed coordinates for p(Xly) and p(X) , we have D [P(Xly) : p(X)] 
D [«(Xly) : «(X)] = D [«(Xly) : ('J + D [(I : «(X)J, where (' = ('(X,y) 
((1 (Xly), (2 (X Iy) , (3 (X)) = (1}1 (Xly), 1}2(Xly), B3(X)). 

1 A more proper formulation in this hypothetical testing can be derived, resulting in 
using p value from X2 (2) distribution , but we omit it here due to the limited space [9] 



Theorem 3. 
J(X, Y) = It (X, Y) + h(X, Y) , (7) 

where It (X, Y), h(X, Y) are given by 

It (X, Y) = Ep(Y) [D [«(Xly) : ('(X,y)]] ,h(X, Y) = Ep(Y) [D [('(X,y) : «(X)]] . 

Obviously, the similar result holds with respect to p(YIX). By this theorem, J is the 
sum of the two terms: It is by modulation of the correlation components of X, while 
h is by modulation of the marginals of X. This observation helps us investigate the 
behavioral significance by modulating either coincident firing or mean firing rates. 
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Figure 1: Demonstration of information-geometric measure in two neuron case, 
using simulated neural data, where two behavioral choices (sl, s2) are assumed. 
A,B. (1]1 , 1]2 , 1]12) with respect to sl, s2. C,D. COR,B, computed by using ", 
L-iP(Si)",(Si) with P(Si) = 1/2 (i = 1, 2). E. p-values. F. MI. 

Fig 1 succinctly demonstrates results in this section. Figs 1 A, B are supposed to 
show mean firing rates of two neurons and mean coincident firing for two different 
stimuli (sl, s2). The period (a) is assumed as the control period, i.e. , where no 
stimuli is shown yet, whereas the stimulus is shown in the periods (b,c). Fig 1 C, 
D gives COR, B. They look to change similarly over periods, which is reasonable 
because both COR and B represent the same correlational component, but indeed 
change slightly differently over periods (e.g., the relative magnitudes between the 
periods (a) and (c) are different for COR and B) , which is also reasonable because 
both represent the correlational component as in different coordinate systems. Using 
B in Fig 1 D, Fig 1 E shows p-values derived from X2 (1) (i.e., P > 0.95 in Fig 1 E is 
'a significance with P < 0.05') for two different null hypotheses , one of the averaged 
firing in the control period (by solid line) and the other of independent firing (by 
dashed line) , which is of popular use in literature. 

In general, it becomes complicated to test the former hypothesis , using COR. This 
is because the COR, as the coordinate component, is not orthogonal to the mean 
firing rates so that estimation errors among the COR and mean firing rates are 
entangled and that the proper metric among them is rather difficult to compute. 
Once using B, this testing becomes simple due to orthogonality between B and mean 
firing rates. 

Notably, we would draw completely different conclusions on significant coincident 
firing given each null hypothesis in Fig 1 E. This difference may be striking when we 
are to understand the brain function with these kinds of data. Fig 1 F shows the MI 



between firing and behavior, where behavioral event is with respect to stimuli, and 
its decomposition. There is no behavioral information conveyed by the modulation 
of coincident firing in the period (b) (i.e., h = 0 in the period (b)). The increase 
in the total MI (i.e., I) in the period (c), compared with the period (b), is due not 
to the MI in mean firing (h) but to the MI correlation (h). Thus, with a great 
ease, we can directly inspect a function of neural correlation component in relation 
to behavior. 

3 Three neuron case 

With more than two neurons, we need to look not only into a pairwise interaction 
but also into higher-order interactions. Our results in the two neuron case are 
naturally extended to n neuron case and here, we focus on three neuron case for 
illustration. 

For three neurons X = (X1,X2,X3), we let p(x), x = (X1,X2,X3), be their joint 
probability distribution and put Pijk = Prob {Xl = i, X2 = j, X3 = k}, i, j, k = 0,1. 
The set of all such distributions forms a 7-dimensional manifold 8 3 due to "L.Pijk = 
1. The 1]-coordinates 'fI = ('fI1; 'fI2; 'fI3) = (1]1,1]2,1]3; 1]12,1]23,1]13; 1]123) is defined by 

1]i = E [Xi] (i = 1,2,3), 1Jij = E [XiXj] (i, j = 1,2, 3; i i- j), 1]123 = E [X1X2X3]. 

To single out the purely triplewise correlation, we utilize the dual orthogo­
nality of 8- and 1]-coordinates. By using expansion of log p( x) = "L. 8iXi + 
"L.8ijXiXj + 8123X1X2X3 - 'ljJ, we obtain 8-coordinates, () = (()1;()2;()3) = 
(81,82,83; 812 ,823 ,813 ; 8123 ). It's easy to get the expression of these coefficients 
(e.g. 8 = log P111 PIOO POIOP001). Information geometry gives the following theorem. ,123 P110PIOIP0l1POOO 

Theorem 4. 8123 represents the pure triplewise interaction in the sense that 
it is orthogonal to any changes in the single and pairwise marginals, i.e., 'fIl and 'fI2. 

We use the following two mixed coordinates to utilize the dual orthogonality, 

(I = ('fIl; ()2; ()3), (2 = ('fIl; 'fI2; ()3). 

Here (2 is useful to single out the triple wise interaction (()3 = 8123), while (I is to 
single out the pairwise and triplewise interactions together (()2; ()3). Note that 8123 is 
not orthogonal to {8ij }. In other words , except the case of no triple wise interaction 
(8123 = 0), 8ij do not directly represent the pairwise correlation of two random 
variables Xi, X j . The case of independent firing is given by 1]ij = 1]i1]j, 1]123 = 1]11]21]3 
or equivalently by ()2 = 0, ()3 = o. 
The decomposition in the KL is now given as follows. 

Theorem 5. 

D [p : q] = D [p : p] + D [p : q] = D [p : fi] + D [p : q] = D [p : p] + D [p : fi] + D [p : q] . 
(8) 

where, using the mixed coordinates, we have (g = ('fIi; 'fI~; ()§), (f = ('fIi; ()~; ()§). 

A hypothetical testing is formulated similarly to the two neuron case. We can exam­
ine a significance of the triplewise interaction by A2 = 2ND [p : p] ~ N g~7 (~) (8f23-
8i23)2 ~ X2(1). For a significance of triplewise and pairwise interactions together, 

we have Al = 2ND [p : fi] ~ N "L.J,j=4 gfj(f)((f - (f)((f - (f) ~ X2(4). 

For the decomposition of the MI between firing X and behavior Y, we have 

Theorem 6. 

J(X, Y) = h (X, Y) + h(X, Y) = h(X, Y) + J4(X, Y) (9) 



where 

h(X, Y) = Ep(Y) [D [( I(X ly ) : ( I(X,y)] ] , h(X, Y) = Ep(Y) [D [(I (X,y) : ( I(X) ]] , 

h(X, Y) = Ep(Y) [D [(2(X ly ) : ( 2(X,y)] ] , 14 (X, Y) = Ep(Y) [D [(2(X,y) : ( 2(X) ]], 

By t he first equality, I is decomposed into two parts: II is conveyed by the pairwise 
and triplewise interactions of firing, and h by the mean firing rate modulation. 
By the second equality, I is decomposed differently: h, conveyed by t he triplewise 
interaction, and 14 , by the other terms. 
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Figure 2: Demonstration in three neuron case. A '11 = ('11 1> '112, '113) ~ ('T/i , 'T/ij,'T/ijk) 
from top to bottom, since we treated a homogeneous case in this simulation for 
simplicity. B. COR. C. (}12,(}13 , (}23' D (}123 . E p-value,...., X2 (1). F p-value,...., X2(4). 

We emphasize that all the above decompositions come from the choice of the 'or­
thogonal' coordinates. Fig 2 highlights some of the results in this section. Fig 2 A 
shows the mean firing rates (see legend). The period (a) is assumed as the control 
period. Fig 2 B indicates that COR changes only in the periods (c,d), while Fig 2 
C indicates that (}123 changes only in the period (d). Taken together, we observe 
that the triplewise correlation (}123 can be modulated independently from COR. Fig 
2 E indicates the p-value from X2(1) against the null hypothesis of the activity in 
the control period. The triple wise coincident firing becomes significant only in the 
period (d). Fig 2 F indicates the p-value from X2(4) . The coincident firing, taking 
the triplewise and pairwise interaction together, becomes significant in both periods 
(c ,d). We cannot observe these differences in modulation of pairwise and triplewise 
interactions over periods (c, d), when we inspect only COR. 

Remark: For a general n neuron case, we can use the k-cut mixed coordinates, 
(k = ('111 ' ... , '11 k; 0k+l, .. . , On) = ('I1k- ; 0k+)' Using the orthogonality between 'I1k­
and 0k+, the similar results hold. To meet the computational complexity involved 
in this general case, some practical difficulties should be resolved in practice [9] . 

4 Discussions 

We presented the information-geometric measures to analyze spike firing patterns, 
using two and three neuron cases for illustration. The choice of 'orthogonal' co­
ordinates provides us with a simple, transparent and systematic procedure to test 
significant firing patterns and to directly relate such a pattern with behavior. We 
hope that this method simplifies and strengthens experimental data analysis . 
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