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Abstract 

The curse of dimensionality gives rise to prohibitive computational 
requirements that render infeasible the exact solution of large- scale 
stochastic control problems. We study an efficient method based 
on linear programming for approximating solutions to such prob­
lems. The approach "fits" a linear combination of pre- selected 
basis functions to the dynamic programming cost- to- go function. 
We develop bounds on the approximation error and present experi­
mental results in the domain of queueing network control, providing 
empirical support for the methodology. 

1 Introduction 

Dynamic programming offers a unified approach to solving problems of stochastic 
control. Central to the methodology is the cost- to- go function, which can obtained 
via solving Bellman's equation. The domain of the cost- to- go function is the state 
space of the system to be controlled, and dynamic programming algorithms com­
pute and store a table consisting of one cost- to- go value per state. Unfortunately, 
the size of a state space typically grows exponentially in the number of state vari­
ables. Known as the curse of dimensionality, this phenomenon renders dynamic 
programming intractable in the face of problems of practical scale. 

One approach to dealing with this difficulty is to generate an approximation within 
a parameterized class of functions , in a spirit similar to that of statistical regres­
sion. The focus of this paper is on linearly parameterized functions: one tries to 
approximate the cost- to- go function J* by a linear combination of prespecified ba­
sis functions. Note that this scheme depends on two important preconditions for the 
development of an effective approximation. First, we need to choose basis functions 



that can closely approximate the desired cost-to-go function. In this respect, a suit­
able choice requires some practical experience or theoretical analysis that provides 
rough information on the shape of the function to be approximated. "Regularities" 
associated with the function, for example, can guide the choice of representation. 
Second, we need an efficient algorithm that computes an appropriate linear combi­
nation. 

The algorithm we study is based on a linear programming formulation, originally 
proposed by Schweitzer and Seidman [5], that generalizes the linear programming 
approach to exact dynamic programming, originally introduced by Manne [4]. We 
present an error bound that characterizes the quality of approximations produced 
by the linear programming approach. The error is characterized in relative terms, 
compared against the "best possible" approximation of the optimal cost-to-go func­
tion given the selection of basis functions. This is the first such error bound for 
any algorithm that approximates cost- to- go functions of general stochastic control 
problems by computing weights for arbitrary collections of basis functions. 

2 Stochastic control and linear programming 

We consider discrete- time stochastic control problems involving a finite state space 
S of cardinality lSI = N. For each state XES, there is a finite set of available 
actions A x. Taking action a E A x when the current state is x incurs cost 9a(X) . 
State transition probabilities Pa(x,y) represent, for each pair (x,y) of states and 
each action a E A x, the probability that the next state will be y given that the 
current state is x and the current action is a E Ax. 

A policy u is a mapping from states to actions. Given a policy u, the dynamics of 
the system follow a Markov chain with transition probabilities Pu(x)(x, y). For each 
policy u, we define a transition matrix Pu whose (x,y)th entry is Pu(x)(x,y). 

The problem of stochastic control amounts to selection of a policy that optimizes 
a given criterion. In this paper, we will employ as an optimality criterion infinite­
horizon discounted cost of the form 

Ju(x) =E [~(i9U(Xd lxo =x] , 

where 9u(X) is used as shorthand for 9u(x)(X) and the discount factor a E (0,1) 
reflects inter- temporal preferences. Optimality is attained by any policy that is 
greedy with respect to the optimal cost-to-go function J*(x) = minu Ju(x) (a policy 
u is called greedy with respect to J if TuJ = T J). 

Let us define operators Tu and T by TuJ = 9u +aPuJ and T J = minu (9u + aPuJ). 
The optimal cost-to-go function solves uniquely Bellman's equation J = T J. Dy­
namic programming offers a number of approaches to solving this equation; one of 
particular relevance to our paper makes use of linear programming, as we will now 
discuss. Consider the problem 

max clJ (1) 
S.t. T J;::: J, 

where c is a vector with positive components, which we will refer to as state­
relevance wei9hts. It can be shown that any feasible J satisfies J :::; J*. It follows 
that, for any set of positive weights c, J* is the unique solution to (1). 

Note that each constraint (T J)(x) ;::: J(x) is equivalent to a set of constraints 
9a(X) + a L.YEs Pa(X ,y) J(y) ;::: J(x), Va E A x, so that the optimization problem 
(1) can be represented as an LP, which we refer to as the exact LP. 



As mentioned in the introduction, state spaces for practical problems are enormous 
due to the curse of dimensionality. Consequently, the linear program of interest in­
volves prohibitively large numbers of variables and constraints. The approximation 
algorithm we study reduces dramatically the number of variables. 

Let us now introduce the linear programming approach to approximate dynamic 
programming. Given pre-selected basis functions (Pl, .. . , cPK, define a matrix If> = 
[ cPl cPK ]. With an aim of computing a weight vector f E ~K such that If>f 
is a close approximation to J*, one might pose the following optimization problem: 

max c'lf>r (2) 
s.t. Tlf>r 2:: If>r. 

Given a solution f, one might then hope to generate near- optimal decisions by using 
a policy that is greedy with respect to If>f. 

As with the case of exact dynamic programming, the optimization problem (2) can 
be recast as a linear program. We will refer to this problem as the approximate 
LP. Note that, though the number of variables is reduced to K, the number of 
constraints remains as large as in the exact LP. Fortunately, we expect that most 
of the constraints will become irrelevant, and solutions to the linear program can 
be approximated efficiently, as demonstrated in [3] . 

3 Error Bounds for the Approximate LP 

When the optimal cost- to- go function lies within the span of the basis functions, 
solution of the approximate LP yields the exact optimal cost-to-go function. Un­
fortunately, it is difficult in practice to select a set of basis functions that contains 
the optimal cost- to- go function within its span. Instead, basis functions must be 
based on heuristics and simplified analyses. One can only hope that the span comes 
close to the desired cost- to- go function. 

For the approximate LP to be useful , it should deliver good approximations when 
the cost- to- go function is near the span of selected basis functions. In this section, 
we present a bound that ensure desirable results of this kind. 

To set the stage for development of an error bound, let us establish some notation. 
First , we introduce the weighted norms, defined by 

1IJ111 ~ = '"' ')'(x) IJ(x)l , IIJll oo ~ = max ')'(x) IJ(x)l, 
" ~ " xES 

xES 

for any ')' : S f-t ~+. Note that both norms allow for uneven weighting of errors 
across the state space. 

We also introduce an operator H, defined by 

(HV)(x) = max L Pa(x, y)V(y), 
aEAz 

y 

for all V : S f-t R For any V , (HV)(x) represents the maximum expected value 
of V (y) if the current state is x and y is a random variable representing the next 
state. Based on this operator, we define a scalar 

V(x) 
kv = m,:x V(x) - a(HV)(x) , (3) 

for each V : S f-t ~. 



We interpret the argument V of H as a "Lyapunov function," while we view kv as 
a "Lyapunov stability factor," in a sense that we will now explain. In the upcoming 
theorem, we will only be concerned with functions V that are positive and that 
make kv nonnegative. Also, our error bound for the approximate LP will grow 
proportionately with kv, and we therefore want kv to be small. At a minimum, kv 
should be finite , which translates to a condition 

a(HV)(x) < V(x) , "Ix ES. (4) 

If a were equal to 1, this would look like a Lyapunov stability condition: the 
maximum expected value (HV)(x) at the next time step must be less than the 
current value V(x). In general, a is less than 1, and this introduces some slack in 
the condition. Note also that kv becomes smaller as the (HV)(x)'s become small 
relative to the V(x)'s. Hence, kv conveys a degree of "stability," with smaller values 
representing stronger stability. 

We are now ready to state our main result. For any given function V mapping S 
to positive reals, we use l/V as shorthand for a function x I-t l/V(x). 

Theorem 3.1 {2} Let f be a solution of the approximate LP. Then, for any v E 3rK 

such that (<T>v) (x) > 0 for all xES and aH <T>v < <T>v , 

IIJ* - <T>flkc :::; 2k<I>v(c'<T>v) min IIJ* - <T>rll oo,l/<I>v· 
r 

(5) 

A proof of Theorem 3.1 can be found in the long version of this paper [2]. 

We highlight some implications of Theorem 3.1. First, the error bound (5) tells 
that the the approximation error yielded by the approximate LP is proportional to 
the error associated with the best possible approximation relative to a certain norm 
11·lll,l/<I>v. Hence we expect that the approximate LP will have reasonable behavior 
- if the choice of basis functions is appropriate, the approximate LP should yield a 
relatively good approximation to the cost-to-go function , as long as the constants 
k<I>v and c' <T>v remain small. 

Note that on the left-hand side of (5), we measure the approximation error with the 
weighted norm 11·lkc. Recall that the weight vector c appears in objective function 
of the approximate LP (2) and must be chosen. In approximating the solution to a 
given stochastic control problem, it seems sensible to weight more heavily portions 
of the state space that are visited frequently, so that accuracy will be emphasized 
in such regions. As discussed in [2], it seems reasonable that the weight vector c 
should be chosen to reflect the relative importance of each state. 

Finally, note that the Lyapunov function <T>v plays a central role in the bound of 
Theorem 3.1. Its choice influences three terms on the right-hand-side of the bound: 

1. the error minr IIJ* - <T>rll oo, l/<I>v; 
2. the Lyapunov stability factor k<I> v; 

3. the inner product c' <T>v with the state- relevance weights. 

An appropriately chosen Lyapunov function should make all three of these terms 
relatively small. Furthermore, for the bound to be useful in practical contexts, 
these terms should not grow much with problem size. We now illustrate with an 
application in queueing problems how a suitable Lyapunov function could be found 
and show how these terms scale with problem size. 



3.1 Example: A Queueing Network 

Consider a single reentrant line with d queues and finite buffers of size B. We assume 
that exogenous arrivals occur at queue 1 with probability p < 1/2. The state x E ~d 
indicates the number of jobs in each queue. The cost per stage incurred at state x 
is given by 

the average number of jobs per queue. 

As discussed in [2] , under certain stability assumptions we expect that the optimal 
cost-to-go function should satisfy 

O J* () P2 I Pl I ::::; x::::; dX x + de x + Po, 

for some positive scalars Po, Pl and P2 independent of d. We consider a Lyapunov 
function V(x) = ~XIX + C for some constant C > 0, which implies 

m}n IIJ* -lJ>rll oo,l/V < IIJ*ll oo,l /V 

< 
P2XlX + Plelx + dpo 

max '-----'---..,-----'--
x2:O XiX + dC 

Po 
< P2 + Pl + C' 

and the above bound is independent of the number of queues in the system. 

Now let us study kv. We have 

a(HV)(x) < a [p (~XIX + 2X1/ 1 + C) + (1- p) (~XIX + C) ] 
< V(x) (a+ap:;~:~), 

and it is clear that, for C sufficiently large and independent of d, there is a j3 < 1 
independent of d such that aHV ::::; j3V, and therefore kv ::::; 1 ~,6 . 

Finally, let us consider ciV. Discussion presented in [2] suggests that one might want 
to choose c so as to reflect the stationary state distribution. We expect that under 
some stability assumptions, the tail of the stationary state distribution will have an 

upper bound with geometric decay [1]. Therefore we let c(x) = (l!;l+l)d plxl, for 

some 0 < P < 1. In this case, c is equivalent to the conditional joint distribution of 
d independent and identically distributed geometric random variables conditioned 
on the event that they are less than B + 1, and we have 

clV = E [~t, xl + C I Xi < B + 1, i = 1, ... , d] < 2 (1 ~2p)2 + 1 ~ P + C, 

where Xi, i = 1, .. . , d are identically distributed geometric random variables with 
parameter 1 - p. It follows that clV is uniformly bounded over the number of 
queues. 

This example shows that the terms involved in the error bound (5) are uniformly 
bounded both in the number of states in the system and in the number of state 
variables, hence the behavior of the approximate LP does not deteriorate as the 
problem size increases. 

We finally present a numerical experiment to further illustrate the performance of 
the approximate LP. 
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Figure 1: System for Example 3.2. 

Policy 
A verage Cost 

Table 1: Average number of jobs after 50,000,000 simulation steps 

3.2 An Eight-Dimensional Queueing Network 

We consider a queueing network with eight queues. The system is depicted in Figure 
1, with arrival P'i, i = 1,2) and departure (J.Li, i = 1, ... ,8) probabilities indicated. 

The state x E ~8 represents the number of jobs in each queue. The cost-per-state 
is g(x) = lxi, and the discount factor 0:: is 0.995. Actions a E {O, 1}8 indicate which 
queues are being served; ai = 1 iff a job from queue i is being processed. We 
consider only non-iddling policies and, at each t ime step, a server processes jobs 
from one of its queues exclusively. 

We choose c of the form c(x) = (1 - p)8 plxl. The basis functions are chosen to span 
all polynomials in x of degree 2; therefore, the approximate LP has 47 variables. 
Constraints (T<I>r)(x) 2: (<I>r)(x) for the approximate LP are generated by sampling 
5000 states according to the distribution associated with c. Experiments were per­
formed for p = 0.85,0.9 and 0.95, and p = 0.9 yielded the policy with smallest 
average cost. 

We compared the performance of the policy yielded by the approximate LP (ALP) 
with that of first-in-first-out (FIFO), last-buffer-first-serve (LBFS)l and a policy 
that serves the longest queue in each server (LONG). The average number of jobs 
in the system for each policy was estimated by simulation. Results are shown in 
Table 1. The policy generated by the approximate LP performs significantly better 
than each of the heuristics, yielding more than 10% improvement over LBFS, the 
second best policy. We expect that even better results could be obtained by refining 
the choice of basis functions and state-relevance weights. 

4 Closing Remarks and Open Issues 

In t his paper we studied the linear programming approach to approximate dynamic 
programming for stochastic control problems as a means of alleviating the curse of 

1 LBFS serves the job that is closest to leaving the system; for example, if there are jobs 
in queue 2 and in queue 6, a job from queue 2 is processed since it will leave the system 
after going through only one more queue, whereas the job from queue 6 will still have to 
go through two more queues. We also choose to assign higher priority to queue 8 than to 
queue 3 since queue 8 has higher departure probability. 



dimensionality. We provided an error bound based on certain assumptions on the 
basis functions. The bounds were shown to be uniformly bounded in the number 
of states and state variables in certain queueing problems. 

Several questions remain open and are the object of future investigation: Can the 
state-relevance weights in the objective function be chosen in some adaptive way? 
Can we add robustness to the approximate LP algorithm to account for errors in the 
estimation of costs and transition probabilities, i.e., design an alternative LP with 
meaningful performance bounds when problem parameters are just known to be in 
a certain range? How do our results extend to the average cost case? How do our 
results extend to the infinite-state case? How does the quality of the approximate 
value function, measure by the weighted L1 norm, translate into actual performance 
of the associated greedy policy? 

Acknowledgements 

This research was supported by NSF CAREER Grant ECS-9985229, by the ONR 
under Grant MURI N00014-00-1-0637, and by an IBM Research Fellowship. 

References 

[1] Bertsimas, D. , Gamarnik, D. & Tsitsiklis, J. , "Performance of Multiclass Markovian 
Queueing Networks via Piecewise Linear Lyapunov Functions," submitted to Annals of 
Applied Probability, 2000. 

[2] de Farias, D.P. & Van Roy, B. , "The Linear Programming Approach to Approximate 
Dynamic Programming," submitted to publication, 200l. 

[3] de Farias, D.P. & Van Roy, B., "On Constraint Sampling for Approximate Linear 
Programming," , submitted to publication, 200l. 

[4] Manne, A.S., "Linear Programming and Sequential Decisions," Management Science 
6, No.3, pp. 259-267, 1960. 

[5] Schweitzer, P. & Seidmann, A. , "Generalized Polynomial Approximations in Markovian 
Decision Processes," Journal of Mathematical Analysis and Applications 110, pp. 568-
582, 1985. 


