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Abstract

This paper presents an unsupervised learning algorithm that can derive
the probabilistic dependence structure of parts of an object (a moving hu-
man body in our examples) automatically from unlabeled data. The dis-
tinguished part of this work is that it is based on unlabeled data, i.e., the
training features include both useful foreground parts and background
clutter and the correspondence between the parts and detected features
are unknown. We use decomposable triangulated graphs to depict the
probabilistic independence of parts, but the unsupervised technique is
not limited to this type of graph. In the new approach, labeling of the
data (part assignments) is taken as hidden variables and the EM algo-
rithm is applied. A greedy algorithm is developed to select parts and to
search for the optimal structure based on the differential entropy of these
variables. The success of our algorithm is demonstrated by applying it
to generate models of human motion automatically from unlabeled real
image sequences.

1 Introduction

Human motion detection and labeling is a very important but difficult problem in computer
vision. Given a video sequence, we need to assign appropriate labels to the different regions
of the image (labeling) and decide whether a person is in the image (detection). In [8, 7],
a probabilistic approach was proposed by us to solve this problem. To detect and label a
moving human body, a feature detector/tracker (such as corner detector) is first run to obtain
the candidate features from a pair of frames. The combination of features is then selected
based on maximum likelihood by using the joint probability density function formed by the
position and motion of the body. Detection is performed by thresholding the likelihood.
The lower part of Figure 1 depicts the procedure.

One key factor in the method is the probabilistic model of human motion. In order to avoid
exponential combinatorial search, we use conditional independence property of body parts.
In the previous work[8, 7], the independence structures were hand-crafted. In this paper,
we focus on the the previously unresolved problem (upper part of Figure 1): how to learn
the probabilistic independence structure of human motion automatically from unlabeled
training data, meaning that the correspondence between the candidate features and the parts
of the object is unknown. For example when we run a feature detector (such as Lucas-
Tomasi-Kanade detector [10]) on real image sequences, the detected features can be from
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Figure 1: Diagram of the system.

target objects and background clutter with no identity attached to each feature. This case
is interesting because the candidate features can be acquired automatically. Our algorithm
leads to systems able to learn models of human motion completely automatically from real
image sequences - unlabeled training features with clutter and occlusion.

We restrict our attention to triangulated models, since they both account for much corre-
lation between the random variables that represent the position and motion of each body
part, and they yield efficient algorithms. Our goal is to learn the best triangulated model,
i.e., the one that reaches maximum likelihood with respect to the training data. Struc-
ture learning has been studied under the graphical model (Bayesian network) framework
([2, 4, 5, 6]). The distinguished part of this paper is that it is an unsupervised learning
method based on unlabeled data, i.e., the training features include both useful foreground
parts and background clutter and the correspondence between the parts and detected fea-
tures are unknown. Although we work on triangulated models here, the unsupervised tech-
nique is not limited to this type of graph.

This paper is organized as follows. In section 2 we summarize the main facts about the
triangulated probability model. In section 3 we address the learning problem when the
training features are labeled, i.e., the parts of the model and the correspondence between
the parts and observed features are known. In section 4 we address the learning problem
when the training features are unlabeled. In section 5 we present some experimental results.

2 Decomposable triangulated graphs

Discovering the probability structure (conditional independence) among variables is im-
portant since it makes efficient learning and testing possible, hence some computationally
intractable problems become tractable. Trees are good examples of modeling conditional
(in)dependence [2, 6]. The decomposable triangulated graph is another type of graph which
has been demonstrated to be useful for biological motion detection and labeling [8, 1].

A decomposable triangulated graph [1] is a collection of cliques of size three, where there
is an elimination order of vertices such that when a vertex is deleted, it is only contained
in one triangle and the remaining subgraph is again a collection of triangles until only one
triangle left. Decomposable triangulated graphs are more powerful than trees since each
node can be thought of as having two parents. Similarly to trees, efficient algorithms allow
fast calculation of the maximum likelihood interpretation of a given set of data.

Conditional independence among random variables (parts) can be described by a decom-
posable triangulated graph. Let
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, and- 8 0 ��9 0 ��: 0 4 � - 8 1 �C9 1 ��: 1 4 ��������� - 8 A �C9 A ��: A 4 are the cliques.
- 8 0 � 8 1 ��������� 8 A 4 gives

the elimination order for the decomposable graph.

3 Optimization of the decomposable triangulated graph

Suppose D � 
  0 �  1 ������� �  FE �
are i.i.d samples from a probability density function,

where
 HG � -/ G!�0 ���������  G! 3 4 , � %JI %LK

, are labeled data. We want to find the
decomposable triangulated graph M , such that

,.- MON D 4 is maximized.
,.- MON D 4 is the

probability of graph M being the ’correct’ one given the observed data D . Here we use M
to denote both the decomposable graph and the conditional (in)dependence depicted by the
graph. By Bayes’ rule,

,.- MON D 4 � ,.- DHN M 4 ,.- M 4�P�,.- D 4 , therefore if we can assume the
priors

,.- M 4 are equal for different decompositions, then our goal is to find the structureM which can maximize
,.- DHN M 4 . From the previous section, a decomposable triangulated

graph M is represented by
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where ` -7a 4 is differential entropy or conditional differential entropy [3] (we consider
continuous random variables here). Equation (2) is an approximation which converges
to equality for

K b c
due to the weak Law of Large numbers and definitions and

properties of differential entropy [3, 2, 4, 5, 6]. We want to find the decomposition- 8 0 ��9 0 ��: 0 4 � - 8 1 �C9 1 ��: 1 4 ��������� - 8BA �C9 A ��: A 4 such that the above equation can be maxi-
mized.

3.1 Greedy search

Though for tree cases, the optimal structure can be obtained efficiently by the maximum
spanning tree algorithm [2, 6], for decomposable triangulated graphs, there is no existing
algorithm which runs in polynomial time and guarantees to the optimal solution [9]. We
develop a greedy algorithm to grow the graph by the property of decomposable graphs. For
each possible choice of

: A (the last vertex of the last triangle), find the best
9 A which

can maximize
? ` -  ed 5 �  ef 5 4 , then get the best child of edge

- 9 A ��: A 4 as 8 A , i.e., the
vertex (part) that can maximize

? ` -/ <g 5 N  d 5 �  f 5 4 . The next vertex is added one by
one to the existing graph by choosing the best child of all the edges (legal parents) of the
existing graph until all the vertices are added to the graph. For each choice of

: A , one such
graph can be grown, so there are

�
candidate graphs. The final result is the graph with the

highest hji/k ,.- DFN M 4 among the
�

graphs.

The above algorithm is efficient. The total search cost is
�ml - �n? �porqts - - ��l - =u?

v 4 o � 4 l v 4 4
, which is on the order of

�rw
. The algorithm is a greedy algorithm, with no

guarantee that the global optimal solution could be found. Its effectiveness will be explored
through experiments.

3.2 Computation of differential entropy - translation invariance

In the greedy search algorithm, we need to compute ` -  <g ( �  d ( �  f ( 4 and ` -/ d ( �  f ( 4 ,�.% v %r=
. If we assume that they are jointly Gaussian, then the differential entropy can

be computed by
01 hxiyk - ��z|{ 4 G N }�N , where

I
is the dimension and } is the covariance matrix.



In our applications, position and velocity are used as measurements for each body part, but
humans can be present at different locations of the scene. In order to make the Gaussian
assumption reasonable, translations need to be removed. Therefore, we use local coordinate
system for each triangle

- 8 s ��9 s ��: s 4 , i.e., we can take one body part (for example 8 s ) as
the origin, and use relative positions for other body parts. More formally, let � denote a
vector of positions � � - � g ( � � d ( � � f ( ��� g ( ��� d ( ��� f ( 4 A . Then if we describe positions
relative to 8 s , we obtain, ��� � - � d ( ? � g ( � � f ( ? � g ( ��� d ( ?�� g ( ��� f ( ?�� g ( 4 A . This can
be written as � � �	� � , where [12]
 � �
� �� ��� , with

� � � Z���� �
Z�� � � � .

In the greedy search algorithm, the differential entropy of all the possible triplets are
needed and different triplets are with different origins. To reduce computational cost, notice
that ���
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From the above equations, we can first estimate the mean � and covariance } of
 G

(including all the body parts and without removing translation), then take the dimensions
corresponding to the triangle and use equations (4) and (5) to get the mean and covariance
for

-  eg ( �  d ( �  f ( 4
. Similar procedure can be applied to pairs (for example,

9 s
can be

taken as origin for (
9 s ��: s

)) to achieve translation invariant.

4 Unsupervised learning of the decomposable graph

In this section, we consider the case when only unlabeled data are available. Assume we

have a data set of
K

samples D ��
  0 �  1 ���������  HE �
. Each sample

 G
,
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, is
a group of detected features which contains the target object, but

 G
is unlabeled, which

means the correspondence between the candidate features and the parts of the object is
unknown. For example when we run a feature detector (such as Lucas-Tomasi-Kanade
detector [10]) on real image sequences, the detected features can be from target objects and
background clutter with no identity attached to each feature. We want to select the useful
composite parts of the object and learn the probability structure from D .

4.1 All foreground parts observed

Here we first assume that all the foreground parts are observed for each sample. If the label-
ing for each

 G
is taken as a hidden variable, then the EM algorithm can be used to learn

the probability structure and parameters. Our method was developed from [11], but here
we learn the probabilistic independence structure and all the candidate features are with the
same type. Let ` G denote the labeling for

 FG
. If

 FG
contains

I��
features, then ` G is anI �

-dimensional vector with each element taken a value from

! 
 9 M � (

9 M is the back-

ground clutter label). The observations for the EM algorithm are D � 
  0 �  1 ���������  E �
,

the hidden variables are " � 
 ` G � EG$# 0 , and the parameters to optimize are the probability
(in)dependence structure (i.e. the decomposable triangulated graph) and parameters for its
associated probability density function. We use M to represent both the probability struc-
ture and the parameters. If we assume that

 G
s are independent from each other and ` G

only depends on
 G

, then the likelihood function to maximize is,% � QSR�T ���VU � W � � QSR�T ���VU 1 W ��& QSR�T ��� W �
� ] �� & � QSR�T ]�('*),+.- ' ��� 
 � � ^ � � ^ �0/ 1 W �1& Q R�T ��� W � (6)



where ` G # is the
'
th possible labeling for

 FG
, and � G is the set of all such labelings. Op-

timization directly over equation (6) is hard, and the EM algorithm solves the optimization
problem iteratively. In EM, for each iteration

v
, we will optimize the function,� � W % 1 W % #
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where 
 G # is the probability of ` G � ` G # given the observation
 G

and the decomposable
probability structure M s�� 0 . For each iteration

v
, 
 G # is a fixed number for a hypothesis ` G # .
 G # can be computed as,
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We will discuss the computation of
,.- ` G # �  HG � M s�� 0�4 below. Under the labeling hypoth-

esis ` G � ` G # ,  G is divided into the foreground features
 G ���

, which are parts of the

object, and background (clutter)
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. If the foreground features
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are independent of
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For simplicity, we will assume the priors
,.- ` G # N M 4 are the same for different ` G # , and,.- M 4 are the same for different graph structures. If we assume uniform background den-

sities [11, 8], then
,.-  G � � N ` G # � M 4 � - 0g 4 G�� � 3 , where 8 is the volume of the space a

background feature lies in, is the same for different ` G # . Under probability decomposition
M ,
,.-  HG ��� N ` G # � M 4 can be computed as in equation (1). Therefore the maximization of

equation (7) is equivalent to maximizing,� � W % 1 W % #
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For most problems, the number of possible labelings is very large (on the order of
I 3�

),
so it is computationally prohibitive to sum over all the possible ` G # as in equation (10).
However, if there is one hypothesis labeling `��G # that is much better than other hypotheses,,
i.e. 
��G # corresponding to `��G # is much larger than other 
 G # ’s, then 
��G # can be taken as

�
and other 
 G # ’s as � . Hence equation (10) can be approximated as,
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where
 G # �g ( �  G # �d ( and

 G # �f ( are measurements corresponding to the best labeling `#�G # .
Comparing with equation (2) and also by the weak law of large numbers, we know for
iteration

v
, if the best hypothesis ` �G # is used as the ’true’ labeling, then the decomposable

triangulated graph structure M s can be obtained through the algorithm described in section
3. One approximation we make here is that the best hypothesis labeling `	�G # for each

 G
is

really dominant among all the possible labelings so that hard assignment for labelings can
be used. This is similar to the situation of K-means vs. mixture of Gaussian for clustering
problems. We evaluate this approximation in experiments.



The whole algorithm can be summarized as follows. Given some random initial guess of
the decomposable graph structure M�� and its parameters, then for iteration

v
, (
v

is from
�

until the algorithm converges),
E step: for each

 FG
, use M s�� 0 to find the best labeling `��G # and then compute the differential

entropies;
M step: use the differential entropies to run the greedy graph growing algorithm described
in section 3 and get M s .
4.2 Dealing with missing parts (occlusion)

So far we assume that all the parts are observed. In the case of some parts missing, the
measurements for the missing parts can be taken as additional hidden variables [11], and
the EM algorithm can be modified to handle the missing parts.

For each hypothesis ` G , let
 G� denote the measurements of the observed parts,

 G� be
the measurements for the missing parts, and

 G��� ���  G A�  G A��� A be the measurements of
the whole object (to reduce clutter in the notation, we assume that the dimensions can be
sorted in this way). For each EM iteration, we need to compute � G	��
 and } G	��
 to obtain
the differential entropies and then M s with its parameters. Taking ` G and

 G� as hidden
variables, we can get, � � 	2� � �[ ] � � ��
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All the expectations � -�a 4 are conditional expectations with respect to
 G � ` G � ` �G # and

decomposable graph structure M s�� 0 . Therefore,
 G �� are the measurements of the observed

foreground parts under ` G � `��G # . Since M s�� 0 is Gaussian distributed, conditional expec-
tation � -  G� 4 and � -  G�  G A� 4

can be computed from observed parts
 G �� and the mean

and covariance matrix of M s�� 0 .
5 Experiments
We tested the greedy algorithm on labeled motion capture data (Johansson displays) as in
[8], and the EM-like algorithm on unlabeled detected features from real image sequences.

5.1 Motion capture data

Our motion capture data consist of the 3-D positions of 14 markers fixed rigidly on a
subject’s body. These positions were tracked with 1mm accuracy as the subject walked
back and forth, and projected to 2-D.

Under Gaussian assumption, we first estimated the joint probability density function (mean
and covariance) of the data. From the estimated mean and covariance, we can compute
differential entropies for all the possible triplets and pairs and further run the greedy search
algorithm to find the approximated best triangulated model. Figure 2(a) shows the expected
likelihood (differential entropy) of the estimated joint pdf, of the best triangulated model
from the greedy algorithm, of the hand-constructed model from [8], and of randomly gen-
erated models. The greedy model is clearly superior to the hand-constructed model and the
random models. The gap to the original joint pdf is partly due to the strong conditional in-
dependence assumptions of the triangulated model, which are an approximation of the true
data’s pdf. Figure 2(b) shows the expected likelihood using 50 synthetic datasets. Since
these datasets were generated from 50 triangulated models, the greedy algorithm (solid



curve) can match the true model (dashed curve) extremely well. The solid line with error
bars are the expected likelihoods of random triangulated models.
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Figure 2: Evaluation of greedy search.

5.2 Real image sequences

There are three types of sequences used here: (I) a subject walks from left to right (Figure
3(a,b)); (II) a subject walks from right to left; (III) a subject rides a bike from left to right
(Figure3(c,d)). Left-to-right walking motion models were learned from type I sequences
and tested on all types of sequences to see if the learned model can detect left-to-right
walking and label the body parts correctly. The candidate features were obtained from a
Lucas-Tomasi-Kanade algorithm [10] on two frames. We used two frames to simulate the
difficult situation, where due to extreme body motion or to loose and textured clothing and
occlusion, tracking is extremely unreliable and each feature’s lifetime is short.

Evaluation of the EM-like algorithm. As described in section 4.1, one approximation
we made is taking the best hypothesis labeling instead of summing over all the possible
hypotheses (equation (11)). This approximation was evaluated by checking how the log-
likelihoods evolve with EM iterations and if they converge. Figure 4(a) shows the results of
learning a 12-feature model. We used random initializations, and each curve of Figure 4(a)
corresponds to one such random initialization. From Figure 4(a) we can see that generally
the log-likelihoods grow and converge well with the iterations of EM.

Models obtained. Figure 4 (b) and (c) show the best model obtained after we ran the
EM algorithms for 11 times. Figure 4(b) gives the mean positions and mean velocities
(shown in arrows) of the parts. Figure 4(c) shows the learned decomposable triangulated
probabilistic structure. The letter labels show the body parts correspondence.

Figure 3 shows samples of the results. The red dots (with letter labels) are the maximum
likelihood configuration from the left-to-right walking model. The horizontal bar at the
bottom left of each frame shows the likelihood of the best configuration. The short ver-
tical bar gives the threshold where
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Figure 3: Sample frames from left-to-right walking (a-b) and biking sequences (c-d). The dots
(either filled or empty) are the features selected by Tomasi-Kanade algorithm [10] on two frames.
The filled dots (with letter labels) are the maximum likelihood configuration from the left-to-right
walking model. The horizontal bar at the bottom left of each frame shows the likelihood of the best
configuration. The short vertical bar gives the threshold for detection.
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Figure 4: (a) Evaluation of the EM-like algorithm. Log-likelihood vs. iterations of EM for different
random initializations. (b) and (c) show the best model obtained after we ran the EM-like algorithms
for 11 times.

the likelihood is greater than the threshold, a left-to-right walking person is detected.The
detection rate is 100% for the left-to-right walking vs. right-to-left walking, and 87% for
the left-to-right walking vs. left-to-right biking.

6 Conclusions
In this paper we have described a method for learning the structure and parameters of a
decomposable triangulated graph in an unsupervised fashion from unlabeled data. We have
applied this method to learn models of biological motion that can be used to reliably detect
and label biological motion.
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