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Abstract

Integration in the head-direction system is a computation by which hor-
izontal angular head velocity signals from the vestibular nuclei are in-
tegrated to yield a neural representation of head direction. In the thala-
mus, the postsubiculum and the mammillary nuclei, the head-direction
representation has the form of a place code: neurons have a preferred
head direction in which their firing is maximal [Blair and Sharp, 1995,
Blair et al., 1998, ?].
Integration is a difficult computation, given that head-velocities can vary
over a large range. Previous models of the head-direction system relied
on the assumption that the integration is achieved in a firing-rate-based
attractor network with a ring structure. In order to correctly integrate
head-velocity signals during high-speed head rotations, very fast synaptic
dynamics had to be assumed.
Here we address the question whether integration in the head-direction
system is possible with slow synapses, for example excitatory NMDA
and inhibitory GABA(B) type synapses. For neural networks with such
slow synapses, rate-based dynamics are a good approximation of spik-
ing neurons [Ermentrout, 1994]. We find that correct integration during
high-speed head rotations imposes strong constraints on possible net-
work architectures.

1 Introduction

Several network models have been designed to emulate the properties of head-direction
neurons (HDNs) [Zhang, 1996, Redish et al., 1996, Goodridge and Touretzky, 2000]. The
model by Zhang reproduces persistent activity during stationary head positions. Persistent
neural activity is generated in a ring-attractor network with symmetric excitatory and in-
hibitory synaptic connections. Independently, he and Redish et al. showed that integration
is possible by adding asymmetrical connections to the attractor network. They assumed
that the strength of these asymmetrical connections is modulated by head-velocity. When
the rat moves its head to the right, the asymmetrical connections induce a rightward shift
of the activity in the attractor network. A more plausible model without multiplicative



modulation of connections has been studied recently by Goodridge and Touretzky. There,
the head-velocity input has a modulatory influence on firing rates of intermittent neurons
rather than on connection strengths. The intermittent neurons are divided into two groups
that make spatially offset connections, one group to the right, the other to the left. The dif-
ferent types of neurons in the Goodridge and Touretzky model have firing properties that
are comparable to neurons in the various nuclei of the head-direction system.

What all these previous models have in common is that the integration is per-
formed in an inherent double-ring network with very fast synapses (less than � ms for
[Goodridge and Touretzky, 2000]). The connections made by one ring are responsible for
rightward turns and the connections made by the other ring are responsible for leftward
turns. In order to derive a network theory of integration valid for fast and slow synapses,
here we solve a simple double-ring network in the linear and in the saturated regimes.

An important property of the head-direction system is that the integration be linear over a
large range of head-velocities. We are interested in finding those type of synaptic connec-
tions that yield a large linear range and pose our findings as predictions on optimal network
architectures. Although our network is conceptually simpler than previous models, we
show that using two simple read-out methods, averaging and extracting the maximum, it is
possible to approximate head-velocity independent tuning curves as observed in the Post-
subiculum (PoS) and anticipatory responses in the anterior dorsal thalamus (ADN).

2 Definition of the model

We assume that the number of neurons in the double-ring network is large and write its
dynamics as a continuous neural field
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 � are the firing rates of
neurons in the left and right ring, respectively. The quantities �D� and �F� represent synaptic
activations (amount of neurotransmitter release caused by the firing rates

� � and
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synaptic time constant. The vestibular inputs
3G4 '�6 3 and
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,
M � ,

VB4
and

V � define the intra and inter-ring connection strengths. * is the intra-ring
connection offset and

-
the inter-ring offset.

3 Integration

When the animal is not moving, the vestibular inputs to the two rings are equal, 6 3O� E . In
this case, within a certain range of synaptic connections, steady bumps of activities appear



on the two rings. When the head of the animal rotates, the activity bumps travel at a velocity� determined by 6 3 . For perfect integration, � should be proportional to 6 3 over the full
range of possible head-velocities. This is a difficult computational problem, in particular
for slow synapses.

4 Small head-velocity approximation

When the head is not rotating ( 6 3 � E ), the two stationary bumps of synaptic activation
are of the form� �� ��
 � � " � PGR�T ��
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where 
 4 is the current head direction and
�

is the offset between the two bumps. How to
calculate

�
, � and
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is shown in the Appendix. The half width of these bumps is given by
	� �WA�
 P�PSR�T ���� � �S< (5)

When the angular head velocity is small ( 6 3  3S4�� � ), we linearize the dynamics around
the stationary solution Eq. (4), see Appendix. We find that�G� ��
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where the velocity � is given by
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Equation (8) is the desired result, relating the velocity � of the two bumps to the differential
vestibular input 6 3 . In Fig. 1 we show simulation results using slow synapses ( � �" E ms). The integration is linear over almost the entire range of head-velocities (up to
more than # E�E�$%!�'&%( ) when

V � � M � , i.e., when the amplitudes of inter-ring and intra-ring
connections are equal. We point out that the condition

V � �NM � cannot directly be deduced
from the above formulas, some empirical tuning (for example

V 4 � E ) was necessary to
achieve this large range of linearity (large both in 6 3 and � ).

When the bumps move, their amplitudes tend to decrease. Fig. 1d shows the peak firing
rates of neurons in the two rings as a function of vestibular input. As can be seen, the firing
rates are a linear function of vestibular input, in agreement with equations 17 and 18 of the
Appendix. However, a linear firing-rate modulation by head velocity is not universal, for
some parameters we have seen asymmetrically head-velocity tuning, with a preference for
small head velocities (not shown).
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Figure 1: Velocity of activity bumps as a function of vestibular input 6 3  3G4 . a. Sublinear
integration.

V ��� M � , * ��� E�$ , VB4 � E . b. Supralinear integration.
V ��� M � , * ����� $ ,V 4 � E . c. Linear (perfect) integration.

V � � M � , * �
	 � $ , V 4 � E . d. Head-velocity
dependent modulation of firing rates (on the right and on the left ring). Same parameters
as in c. � � " E ms. * � " � $ , and

- � " � $ .



5 Saturating velocity

When 6 3 is very large, at some point, the left ring becomes inactive. Because inactivating
the left ring means that the push-pull competition between the two rings is minimized, we
are able to determine the saturating velocity of the double-ring network. The saturating
velocity is given by the on-ring connections $ % . Define$ ��
 ��� M�4 �@M �XPGR�T ��
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network with symmetric connections
�$&% ��
 � . By differentiating, it follows that

� � ��
 '�����
	���
� ���

is the solution of a ring network with connections $ ��
 � . Hence, the saturating
velocity ������� is given by

������� � �9A � � * �� <
(11)

Notice that a traveling solution may not always exist if one ring is inactive (this is the case
when there are no intra-ring excitatory connections). However, even without a traveling
solution, equation (11) remains valid. In Figs. 1a and b, the saturating velocity is indicated
by the horizontal dotted lines, in Fig. 1a we find � ����� � � " E	$%!�'&%( and in Fig. 1b � ����� �
	 � E	$'��'&'( .
6 ADN and POs neurons

Goodridge and Touretzky’s integrator model was designed to emulate details of neuronal
tuning as observed in the different areas of the head-direction system. Wondering whether
the simple double ring studied here can also reproduce multiple tuning curves, we analyze
simple read-out methods of the firing rates

� � and
� � . What we find is that two read-

out methods can indeed approximate response behavior resembling that of ADN and POs
neurons.

ADN neurons: By reading out firing rates using a maximum operation, � ��
 � �?BADC � � �!��
 � � � � ��
 � � , anticipatory head-direction tuning arises due to the fact that there is
an activity offset

�
between the two rings, equation (13). When the head turns to the right,

the activity on the right ring is larger than on the left ring and so the tuning of � ��
 � is
biased to the right. Similarly, for left turns, � ��
 � is biased to the left. Thus, the activity
offset between the two rings leads to an anticipation time � for ADN neurons, see Figure
2. Because, by assumption

�
is head-velocity independent, it follows that � is inversely

proportional to head-velocity (assuming perfect integration), � � �  �  � . In other words,
the anticipation time tends to be smaller for fast head rotations and larger for slow head
rotations.

POs neurons: By reading out the double ring activity as an average, � ��
 � � �  � � � �D��
 � �� � ��
 ��� , neurons in POs do not have any anticipation time: because averaging is a symmetric
operation, all information about the direction of head rotations is lost.



0  90 180 270 360 
Head−direction (degs)

F
iri

ng
 R

at
e

Left ring 
Right ring

Max    
Average

Left turn Right turn 

Figure 2: Snapshots of the activities on the two rings (top). Reading out the activities by
averaging and by a maximum operation (bottom).

7 Discussion

Here we discuss how the various connection parameters contribute to the double-ring net-
work to function as an integrator. In particular we discuss how parameters have to be tuned
in order to yield an integration that is large in 6 3 and in � .

� � : By assumption the synaptic time constant � is large. � has the simplest effect
of all parameters on the integrator properties. According to equation (8), � scales
the range of � . Notice that if � were small, a large range of � could be trivially
achieved. The art here is to achieve this with large � .

� * : The connection offset * between neurons receiving similar vestibular input
is the sole parameter besides � determing the saturating head-velocity, beyond
which integration is impossible. According to equation (11), the saturating veloc-
ity is large if * is close to

� E�$ (we want the saturating velocity to be large). In
other words, for good integration, excitatory connections should be strongest (or
inhibitory connections weakest) for neuron pairs with preferred head-directions
differing by close to

� E $ .
� -

: The connection offset
-

between neurons receiving different vestibular input
determines the anticipation time � of thalamic neurons. If

-
is large, then

�
,



the activity offset in equation (13) is large. And, because
�

is proportional to �
(assuming perfect integration), we conclude that

-
should preferentially be large

(close to
� E�$ ) if � is to be large. Notice that by equation (8), the range of � is not

affected by
-

.
� VB4

and
V � : The inter-ring connections should be mainly excitatory, which im-

plies that
VB4

should not be too negative (
V=4 � E was found to be optimal). The

intuitive reason is the following. We want the integration to be as linear in 6 3 as
possible, which means that we want our linear expansions (6) and (7) to deviate
as little as possible from (4). Hence, the differential gain between the two rings
should be small, which is the case when the two rings excite each other. The inter-
ring excitation makes sure, even for large values of 6 3 , that there are comparable
activity levels on the two rings. This is one of the main points of this study.

� M�4
and

M � : The intra-ring connections should be mainly inhibitory, which implies
that

M�4
should be strongly negative. The reason for this is that inhibition is nec-

essary to result in proper and stable integration. Since inhibition cannot come
from the inter-ring connections, it has to come from

M 4
. Notice also that accord-

ing to equation (15),
M � cannot be much larger than

V � . If this were the case,
the persistent activity in the no head-movement case would become unstable. For
linear integration we have found that the condition

V � � M � is necessary; small
deviations from this condition cause the integrator to become sub- or supralinear.

8 Conclusion

We have presented a theory for integration in the head-direction system with slow synapses.
We have found that in order to achieve a large range of linear integration, there should be
strong excitatory connections between neurons with dissimilar head-velocity tuning and
inhibitory connections between neurons with similar head-velocity tuning (see the discus-
sion). Similar to models of the occulomotor integrator [Seung, 1996], we have found that
linear integration can only be achieved by precise tuning of synaptic weights (for exampleV � �NM � ).

Appendix

To study the traveling pulse solution with velocity � , it is convenient to go into a moving
coordinate frame by the change of variables � � 
B' � � . The stationary solution in the
moving frame reads' � � � �� � � ��� ����� � � � � �	� � � and ' � � � �� � � ��� ����� � � �W� ��� � � (12)

Set � � E . In order to find the fixed points of equation (12), we use the ansatz (4) and
equate the coefficients of the 3 Fourier modes T���� � � � , PGR�T � � � and the � -independent mode.
This leads to � � A�
 P�T���� � M �QT���� �1* �  V � � ' - (13)
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' � � M�4L�.VB4F��� 4 ��
 � � ' PGR�T ��
 � � (14)

� � � � ��
 � � � M �XPGR�T � * ��� � V �� ' M �� T���� � �1* � 8 (15)

where the functions
�D4

and
� � are given by� 4 ��
 � �U� ��D " T���� ��
 � � '&
 � PGR�T ��
 � �10 � � � ��
 � � � ��D " 
 � ' �� T���� � � 
 � � 0 <



The above set of equations fully characterize the solution for � � E . Eq. (13) determines the
offset

�
between the two rings, eq. (15) determines the threshold 
 � , eq. (14) the amplitude�

and eq. (5) the bias � .

When the vestibular input 6 3 is small, we assume that the perturbed solution around � ��
and � �� takes the form:� � ��
 � � � � � � � � � PGR�T ��
(')
 4 � ' ��� � �	� � �� � ��
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We linearize the dynamics (12) (to first order in 
 � ) and equate the Fourier coefficients.
This leads to � � M � T���� � * ��! � � " ��
	� � T���� � � 
 � �  � � � � ' � T���� ��
	� � �	� 0 (16)

where � ��� � � � '�� � � and �	� � �	� � '��	� � . We determine � � and �	� by solving the
linearized dynamics of the differential mode ��� � � � ��
' � � ' � � ��
 � � � � PSR T ��
 ' 
 4F� ' �	� .
Comparing once more the Fourier coefficients leads to

� � � � 6 3 " � ��� 
 � ' � � � � ' ��� T���� ��
 � � 0 � �
(17)

�	� � � � � 6 3 " � � � 
	� ' � � � � ' � � T���� ��
 � � 0 � � � (18)

where
� � � � M 4 ' V 4 �   . By substituting � � and �	� into Eq. (16), we find equation (8).
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