
A Sequence Kernel and its Application to
Speaker Recognition

William M. Campbell
Motorola Human Interface Lab

7700 S. River Parkway
Tempe, AZ 85284

Bill.Campbell@motorola.com

Abstract

A novel approach for comparing sequences of observations using an
explicit-expansion kernel is demonstrated. The kernel is derived using
the assumption of the independence of the sequence of observations and
a mean-squared error training criterion. The use of an explicit expan-
sion kernel reduces classifier model size and computation dramatically,
resulting in model sizes and computation one-hundred times smaller in
our application. The explicit expansion also preserves the computational
advantages of an earlier architecture based on mean-squared error train-
ing. Training using standard support vector machine methodology gives
accuracy that significantly exceeds the performance of state-of-the-art
mean-squared error training for a speaker recognition task.

1 Introduction

Comparison of sequences of observations is a natural and necessary operation in speech
applications. Several recent approaches using support vector machines (SVM’s) have been
proposed in the literature. The first set of approaches attempts to model emission proba-
bilities for hidden Markov models [1, 2]. This approach has been moderately successful
in reducing error rates, but suffers from several problems. First, large training sets result
in long training times for support vector methods. Second, the emission probabilities must
be approximated [3], since the output of the support vector machine is not a probability.
A more recent method for comparing sequences is based on the Fisher kernel proposed by
Jaakkola and Haussler [4]. This approach has been explored for speech recognition in [5].
The application to speaker recognition is detailed in [6]. We propose an alternative kernel
based upon polynomial classifiers and the associated mean-squared error (MSE) training
criterion [7]. The advantage of this kernel is that it preserves the structure of the classifier
in [7] which is both computationally and memory efficient.

We consider the application of text-independent speaker recognition; i.e., determining or
verifying the identity of an individual through voice characteristics. Text-independent
recognition implies that knowledge of the text of the speech data is not used. Traditional
methods for text-independent speaker recognition are vector quantization [8], Gaussian
mixture models [9], and artificial neural networks [8]. A state-of-the-art approach based
on polynomial classifiers was presented in [7]. The polynomial approach has several ad-

vantages over traditional methods–1) it is extremely computationally-efficient for identi-
fication, 2) the classifier is discriminative which eliminates the need for a background or
cohort model [10], and 3) the method generates small classifier models.

In Section 2, we describe polynomial classifiers and the associated scoring process. In
Section 3, we review the process for mean-squared error training. Section 4 introduces the
new kernel. Section 5 compares the new kernel approach to the standard mean-squared
error training approach.

2 Polynomial classifiers for sequence data

We start by considering the problem of speaker verification–a two-class problem. In this
case, the goal is to determine the correctness of an identity claim (e.g., a user id was entered
in the system) from a voice input. If � is the class, then the decision to be made is if the
claim is valid, ��������� , or if an impostor is trying to break into the system, ���
	��
� . We
motivate the classification process from a probabilistic viewpoint.

For the verification application, a decision is made from a sequence of observations ex-
tracted ����������������� from the speech input. We decide based on the output of a discriminant
function using a polynomial classifier. A polynomial classifier of the form ������� � �"!$# �����
where � is the vector of classifier parameters (model) and # is an expansion of the input
space into the vector of monomials of degree % or less is used. For example, if % �
& and� �(') �)+*-, ! , then# ����� �/.�01) �) *) * �) �) *) **)+2�) * �) *) �) **)32*�4 ! � (1)

Note that we do not use a nonlinear activation function as is common in higher-order neural
networks; this allows us to find a closed form solution for training. Also, note that we use
a bold # to avoid confusion with probabilities.

If the polynomial classifier is trained with a mean-squared error training criterion and target
values of 0 for �
�(���5� and 6 for �7�(��
� , then ������� will approximate the a posteriori
probability 8�� �9�:���5��; ��� [11]. We can then find the probability of the entire sequence,8��<� � �������-��� � ; �=�7���5� � , as follows. Assuming independence of the observations [12] gives8������>������������� ; � � � �?@BA � 8C��� @ ; � �� �?@BA � 8C� �D; � @ ��8��<� @ �8�� � � � (2)

For the purposes of classification, we can discard 8��<� @ � . We take the logarithm of both
sides to get the discriminant functionEGF ��� � � ; � � � �H @�A ��IBJLK M 8�� �D; � @ �8�� � �(N (3)

where we have used the shorthand � � � to denote the sequence �C���������-����� . We use two
terms of the Taylor series, IBJLK �) �PO)"QR0 , to approximate the discriminant function and
also normalize by the number of frames to obtain the final discriminant functionE �<� � � ; � � � 0S �H @�A � 8C� �D; � @ �8�� � � � (4)

Note that we have discarded the QT0 in this discriminant function since this will not affect
the classification decision. The key reason for using the Taylor approximation is that it
reduces computation without significantly affecting classifier accuracy.

Now assume we have a polynomial function ���<��� O 8�� �7� ���5��; ��� ; we call the vector �
the speaker model. Substituting in the polynomial function ���<��� givesE �<� � � ; �=�R���5� � � 0S �H @�A � � !$# ��� @ �8C� � �R���5� �� 0S 8�� �=�R���5� � � ! � �H @�A � # ��� @ ���� 08�� �=�R���5� � � !��#

(5)

where we have defined the mapping � � ��� �# as� � ��� 0S �H @�A � # ��� @ � � (6)

We summarize the scoring method. For a sequence of input vectors � ������������� and a speaker
model, � , we construct �# using (6). We then score using the speaker model, �
	 J���
 �
� ! �# .
Since we are performing verification, if ��	 J��

 is above a threshold then we declare the
identity claim valid; otherwise, the claim is rejected as an impostor attempt. More details
on this probabilistic scoring method can be found in [13].

Extending the sequence scoring framework to the case of identification (i.e., identifying
the speaker from a list of speakers by voice) is straightforward. In this case, we construct
speaker models for each speaker � @ and then choose the speaker � which maximizes � !@ �#
(assuming equal prior probability of each speaker). Note that identification has low com-
putational complexity, since we must only compute one inner product to determine the
speaker’s score.

3 Mean-squared error training

We next review how to train the polynomial classifier to approximate the probability8�� �D; ��� ; this process will help us set notation for the following sections. Let � be the
desired speaker model and � � � � the ideal output; i.e., � � ���5� � � 0 and � � 	B� � � � 6 . The
resulting problem is ��� ��� � K �
	��� ����� � ! # ����� Q � � � ��� * � (7)

where � denotes expectation. This criterion can be approximated using the training set as� � �!� ��K �
	"�� #%$'&�(*)H @�A �,++ � ! # �<� @ � Q�0 ++ *.- $'/ 0 (H @BA �1++ � ! # �32 @ � ++ *54 � (8)

Here, the speaker’s training data is � � ����������� $ &�(*) , and the anti-speaker data is2 � �������-�62 $ / 0 (. (Anti-speakers are designed to have the same statistical characteristics as
the impostor set.)

The training method can be written in matrix form. First, define 7983:<; as the matrix whose
rows are the polynomial expansion of the speaker’s data; i.e.,

7=83:<; �?>@@A # ������� !# ��� * � !
...# ��� $B&�(*) � !

CEDDF � (9)

Define a similar matrix for the impostor data, 7�� � : . Define7 � # 7=8 : ;7 � � : 4 � (10)

The problem (8) then becomes ���D��� ��K � 	��� � 7 � Q�� � * (11)

where � is the vector consisting of � 8 : ; ones followed by ��� � : zeros (i.e., the ideal output).

The problem (11) can be solved using the method of normal equations,7 ! 7 � � 7 ! � � (12)

We rearrange (12) to � 7 ! 79� � � 7 !8 : ;	� (13)

where � is the vector of all ones. If we define
 � 7 ! 7 and solve for � , then (13)
becomes � �
�� � 7 !83:<;	� � (14)

4 The naive a posteriori sequence kernel

We can now combine the methods from Sections 2 and 3 to obtain a novel sequence com-
parison kernel in a straightforward manner. Combine the speaker model from (14) with the
scoring equation from (5) to obtain the classifier score�
	 J��

 � 08C� �=�
���5� � �# ! � � 08�� � �
���5� � �# !
 � � 7 !8 : ; � � (15)

Now 8C� �=�7���5� � � � 83: ;�
5����� � : - � 83:<; � O�� 8 : ;�
���� � : (because of the large anti-speaker
population), so that (15) becomes ��	 J��

 � �# ! �
�� � �# !����� � � (16)

where �# ����� � � is � 0
�� 83: ; �*7 !83: ; � (note that this exactly the same as mapping the training
data using (6)), and

�
 is � 0
���� � :>��
 .

The scoring method in (16) is the basis of our sequence kernel. Given two sequences of
speech feature vectors, � � � and 2��� , we compare them by mapping � � � � �#�� and 2�� � � �#��
and then computing � � � :<8-��� � � ��2 � � � � �# ! � �
�� � �# � � (17)
We call

� � � :<8 the naive a posteriori sequence kernel since scoring assumes indepen-
dence of observations and training approximates the a posteriori probabilities. The value� � � : 8-��� � � �62 � � � can be interpreted as scoring using a polynomial classifier on the sequence2 � � , see (5), with the MSE model trained from feature vectors � � � (or vice-versa because
of symmetry).

Several observations should be made about the NAPS kernel. First, scoring complexity can
be reduced dramatically in training by the following trick. We factor

�
 � � �! ! using
the Cholesky decomposition. Then

� � � :<8-��� � � ��2"� � � � � �# � � ! � �# � � . I.e., if we transform
all the sequence data by �##� before training, the sequence kernel is a simple inner product.
For our application in Section 5, this reduces training time from $ hours per speaker down
to %G6 seconds on a Sun Ultra &G6 , & &L6 MHz. Second, since the NAPS kernel explicitly
performs the expansion to “feature space”, we can simplify the output of the support vector
machine. Suppose ' � �# � is the (soft) output of the SVM,

' � �# � � (H @BA �) @ � @ � � � :<8-� �# @ � �# � -+* � (18)

We can simplify this to

' � �# � � � (H @�A �) @ � @ �
 � � �# @ -�� � ! �# (19)

where
� � ' * 6 ����� 6 , ! . That is, once we train the support vector machine, we can

collapse all the support vectors down into a single model � , where � is the quantity in
parenthesis in (19). Third, although the NAPS kernel is reminiscent of the Mahalanobis
distance, it is distinct. No assumption of equal covariance matrices for different classes
(speakers) is made for the new kernel–the kernel covariance matrix is a mixture of the
individual class covariances. Also, the kernel is not a distance measure–no subtraction of
means occurs as in the Mahalanobis distance.

5 Results

5.1 Setup

The NAPS kernel was tested on the standard speaker recognition database YOHO [14] col-
lected from 138 speakers. Utterances in the database consist of combination lock phrases of
fixed length; e.g., “23-45-56.” Enrollment and verification session were recorded at distinct
times. (Enrollment is the process of collecting data for training and generating a speaker
model. Verification is the process of testing the system; i.e., the user makes an identity
claim and then this hypothesis is verified.) For each speaker, enrollment consisted of four
sessions each containing twenty-four utterances. Verification consisted of ten separate ses-
sions with four utterances per session (again per speaker). Thus, there are 40 tests of the
speaker’s identity and 40*137=5480 possible impostor attempts on a speaker. For clarity,
we emphasize that enrollment and verification session data is completely separate.

To extract features for each of the utterances, we used standard speech processing. Each
utterance was broken up into frames of & 6 ms each with a frame rate of 0 6L6 frames/sec. The
mean was removed from each frame, and the frame was preemphasized with the filter 0 Q65� ����� � � . A Hamming window was applied and then 0�� linear prediction coefficients were
found. The resulting coefficients were transformed to 0�� cepstral coefficients. Endpointing
was performed to eliminate non-speech frames. This typically resulted in approximately� 6G6 observations per utterance.

For verification, we measure performance in terms of the pooled and average equal error
rates (EER). The average EER is found by averaging the individual EER for each speaker.
The individual EER is the threshold at which the false accept rate (FAR) equals the false
reject rate (FRR). The pooled EER is found by setting a constant threshold across the
entire population. When the FAR equals the FRR for the entire population this is termed
the pooled EER. For identification, the misclassification error rate is used.

To eliminate bias in verification, we trained the first &	� speakers against the first &
� and
the second &	� against the second &
� (as in [7]). We then performed verification using the
second &
� as impostors to the first &
� speakers models and vice versa. This insures that the
impostors are unknown. For identification, we trained all 0 &
� speakers against each other.

5.2 Experiments

We trained support vector machines for each speaker using the software tool SVM-
Torch [15] and the NAPS kernel (17). The 0�� cepstral features were mapped to a di-
mension %	$ $ vector using a & rd degree polynomial classifier. Single utterances (i.e., “23-
45-56”) were converted to single vectors using the mapping (6) and then transformed with

the Cholesky factor to reduce computation. We cross-validated using the first & enrollment
sessions as training and the % th enrollment session as a test to determine the best tradeoff
between margin and error; the best performing value of � � 65� 0 was used with the final
SVMTorch training. Using the identical set of features and the same methodology, clas-
sifier models were also trained using the mean-squared error criterion using the method
in [7]. For final testing, all % enrollment session were used for training, and all verification
sessions were used for testing.

Results for verification and identification are shown in Table 1. The new kernel method
reduces error rates considerably–the average EER is reduced by &	��� , the pooled EER is
reduced by % � � , and the identification error rate is reduced by % � � . The average number
of support vectors was 0 & � which resulted in a model size of about � $ & � $ %G6 bytes (in single
precision floating point); using the model size reduction method in Section 4 resulted in a
model size of 0 � � 6 bytes–over a hundred times reduction in size.

Table 1: Comparison of structural risk minimization and MSE training

MSE NAPS SVM
Average EER 1.63% 1.01%
Pooled EER 2.76% 1.45%
ID error rate 4.71% 2.72%

We also plotted scores for all speakers versus a threshold, see Figure 1. We normalized
the scores for the MSE and SVM approaches to the same range for comparison. One can
easily see the reduction in pooled EER from the graph. Note also the dramatic shifting of
the FRR curve to the right for the SVM training, resulting in substantially better error rates
than the MSE training. For instance, when FAR is 65� 0 � , the MSE training method gives
an FRR of %	$ � ; whereas, the SVM training method gives an FRR of 0�� � –a reduction by
a factor of & � � $ in error.

−4 −2 0 2 4 6
10

−1

10
0

10
1

10
2

Threshold

P
er

ce
nt

FAR(%) MSE
FRR(%) MSE
FAR(%) SVM
FRR(%) SVM

Figure 1: FAR/FRR rates for the entire population versus a threshold for the SVM and
MSE training methods

6 Conclusions and future work

A novel kernel for comparing sequences in speech applications was derived, the NAPS
kernel. This data-dependent kernel was motivated by using a probabilistic scoring method
and mean-squared error training. Experiments showed that incorporating this kernel in
an SVM training architecture yielded performance superior to that of the MSE training
criterion. Reduction in error rates of up to & � ��$ times were observed while retaining the
efficiency of the original MSE classifier architecture.

The new kernel method is also applicable to more general situations. Potential applications
include–using the approach with radial basis functions, application to automatic speech
recognition, and extending to an SVM/HMM architecture.

References

[1] Vincent Wan and William M. Campbell, “Support vector machines for verification and iden-
tification,” in Neural Networks for Signal Processing X, Proceedings of the 2000 IEEE Signal
Processing Workshop, 2000, pp. 775–784.

[2] Aravind Ganapathiraju and Joseph Picone, “Hybrid SVM/HMM architectures for speech recog-
nition,” in Speech Transcription Workshop, 2000.

[3] John C. Platt, “Probabilities for SV machines,” in Advances in Large Margin Classifiers,
Alexander J. Smola, Peter L. Bartlett, Bernhard Schölkopf, and Dale Schuurmans, Eds., pp.
61–74. The MIT Press, 2000.

[4] Tommi S. Jaakkola and David Haussler, “Exploiting generative models in discriminative clas-
sifiers,” in Advances in Neural Information Processing 11, M. S. Kearns, S. A. Solla, and D. A.
Cohn, Eds. 1998, pp. 487–493, The MIT Press.

[5] Nathan Smith, Mark Gales, and Mahesan Niranjan, “Data-dependent kernels in SVM clas-
sification of speech patterns,” Tech. Rep. CUED/F-INFENG/TR.387, Cambridge University
Engineering Department, 2001.

[6] Shai Fine, Jiří Navrátil, and Ramesh A. Gopinath, “A hybrid GMM/SVM approach to speaker
recognition,” in Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, 2001.

[7] William M. Campbell and Khaled T. Assaleh, “Polynomial classifier techniques for speaker
verification,” in Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, 1999, pp. 321–324.

[8] Kevin R. Farrell, Richard J. Mammone, and Khaled T. Assaleh, “Speaker recognition using
neural networks and conventional classifiers,” IEEE Trans. on Speech and Audio Processing,
vol. 2, no. 1, pp. 194–205, Jan. 1994.

[9] Douglas A. Reynolds, “Automatic speaker recognition using Gaussian mixture speaker mod-
els,” The Lincoln Laboratory Journal, vol. 8, no. 2, pp. 173–192, 1995.

[10] Michael J. Carey, Eluned S. Parris, and John S. Bridle, “A speaker verification system using
alpha-nets,” in Proceedings of the International Conference on Acoustics Speech and Signal
Processing, 1991, pp. 397–400.

[11] Jürgen Schürmann, Pattern Classification, John Wiley and Sons, Inc., 1996.

[12] Lawrence Rabiner and Biing-Hwang Juang, Fundamentals of Speech Recognition, Prentice-
Hall, 1993.

[13] William M. Campbell and C. C. Broun, “A computationally scalable speaker recognition sys-
tem,” in Proceedings of EUSIPCO, 2000, pp. 457–460.

[14] Joseph P. Campbell, Jr., “Testing with the YOHO CD-ROM voice verification corpus,” in Pro-
ceedings of the International Conference on Acoustics, Speech, and Signal Processing, 1995,
pp. 341–344.

[15] Ronan Collobert and Samy Bengio, “Support vector machines for large-scale regression prob-
lems,” Tech. Rep. IDIAP-RR 00-17, IDIAP, 2000.

