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Abstract 

Using methods of Statistical Physics, we investigate the rOle 
of model complexity in learning with support vector machines 
(SVMs). We show the advantages of using SVMs with kernels 
of infinite complexity on noisy target rules, which, in contrast to 
common theoretical beliefs, are found to achieve optimal general
ization error although the training error does not converge to the 
generalization error. Moreover, we find a universal asymptotics of 
the learning curves which only depend on the target rule but not 
on the SVM kernel. 

1 Introduction 

Powerful systems for data inference, like neural networks implement complex input
output relations by learning from example data. The price one has to pay for the 
flexibility of these models is the need to choose the proper model complexity for a 
given task, i.e. the system architecture which gives good generalization ability for 
novel data. This has become an important problem also for support vector machines 
[1]. The main advantage of SVMs is that the learning task is a convex optimization 
problem which can be reliably solved even when the example data require the fitting 
of a very complicated function. A common argument in computational learning 
theory suggests that it is dangerous to utilize the full flexibility of the SVM to learn 
the training data perfectly when these contain an amount of noise. By fitting more 
and more noisy data, the machine may implement a rapidly oscillating function 
rather than the smooth mapping which characterizes most practical learning tasks. 
Its prediction ability could be no better than random guessing in that case. Rence, 
modifications of SVM training [2] that allow for training errors were suggested to be 
necessary for realistic noisy scenarios. This has the drawback of introducing extra 
model parameters and spoils much of the original elegance of SVMs. 



Surprisingly, the results of this paper show that the picture is rather different in 
the important case of high dimensional data spaces. Using methods of Statistical 
Physics, we show that asymptotically, the SVM achieves optimal generalization 
ability for noisy data already for zero training error. Moreover, the asymptotic rate 
of decay of the generalization error is universal, i.e. independent of the kernel that 
defines the SVM. These results have been published previously only in a physics 
journal [3]. 

As is well known, SVMs classify inputs y using a nonlinear mapping into a feature 
vector w(y) which is an element of a Hilbert space. Based on a training set of m 
inputs xl' and their desired classifications 71' , SVMs construct the maximum margin 
hyperplane P in the feature space. P can be expressed as a linear combination of 
the feature vectors w(xl'), and to classify an input y, that is to decide on which side 
of P the image W (y) lies, one basically has to evaluate inner products W (xl') . W (y). 
For carefully chosen mappings wand Hilbert spaces, inner products w(x) . w(y) 
can be evaluated efficiently using a kernel function k(x, y) = w(x) . w(y), without 
having to individually calculate the feature vectors w(x) and w(y). In this manner 
it becomes computationally feasible to use very high and even infinite dimensional 
feature vectors. 

This raises the intriguing question whether the use of a very high dimensional 
feature space may typically be helpful. So far, recent results [4, 5] obtained by 
using methods of Statistical Mechanics (which are naturally well suited for analysing 
stochastic models in high dimensional spaces), have been largely negative in this 
respect. They suggest (as one might perhaps expect) that it is rather important to 
match the complexity of the kernel to the target rule. The analysis in [4] considers 
the case of N-dimensional inputs with binary components and assumes that the 
target rule giving the correct classification 7 of an input x is obtained as the sign 
of a function t(x) which is polynomial in the input components and of degree L. 
The SVM uses a kernel which is a polynomial of the inner product x . y in input 
space of degree K ;::: L, and the feature space dimension is thus O(NK ). In this 
scenario it is shown, under mild regularity condition on the kernel and for large N, 
that the SVM generalizes well when the number of training examples m is on the 
order of N L . So the scale of the learning curve is determined by the complexity 
of the target rule and not by the kernel. However, considering the rate with which 
the generalization error approaches zero one finds the optimal N L 1m decay only 
when K is equal to L and the convergence is substantially slower when K > L. So 
it is important to match the complexity of the kernel to the target rule and using 
a large value of K is only justified if L is assumed large and if one can use on the 
order of N L examples for training. 

In this paper we show that the situation is very different when one considers the 
arguably more realistic scenario of a target rule corrupted by noise. Now one can no 
longer use K = L since no separating hyperplane P will exist when m is sufficiently 
large compared to N L. However when K > L, this plane will exist and we will show 
that it achieves optimal generalization performance in the limit that N L 1m is small. 
Remarkably, the asymptotic rate of decay of the generalization error is independent 
of the kernel in this case and a general characterization of the asymptote in terms of 
properties of the target rule is possible. In a second step we show that under mild 
regularity conditions these findings also hold when k(x, y) is an arbitrary function 
of x . y or when the kernel is a function of the Euclidean distance Ix - YI. The latter 
type of kernels is widely used in practical applications of SVMs. 



2 Learning with Noise: Polynomial Kernels 

We begin by assuming a polynomial kernel k(x, y) = J(x· y) where J(z) = 
Lf=o Ck zk is of degree K. Denoting by P a multi-index P = (PI , ... ,PN) with Pi E 

No, we set xp = JTPTfnf:l %.r and the degree of xp is Ipi = Lf:l Pi· The kernel 
can then be described by features wp(x) = JCiPTxp since k(x,y) = Lp wp(x)wp(y), 
where the summation runs over all multi-indices of degree up to K. To assure that 
the features are real, we assume that the coefficients Ck in the kernel are nonneg
ative. A hyperplane in feature space is parameterized by a weight vector w with 
components wp, and if 0 < TI'W . W (xl'), a point (xl', TI') of the training set lies on 
the correct side of the plane. To express that the plane P has maximal distance to 
the points of the training set , we choose an arbitrary positive stability parameter /'i, 

and require that the weight vector w* of P minimize w . w subject to the constraints 
/'i, < TI'W' w(xl'), for f.l = 1, ... ,m. 

2.1 The Statistical Mechanics Formulation 

Statistical Mechanics allows to analyze a variety of learning scenarios exactly in the 
"thermodynamic limit" of high input dimensionality, when the data distributions 
are simple enough. In this approach, one computes a partition function which 
serves as a generating function for important averages such as the generalization 
error. To define the partition problem for SVMs one first analyzes a soft version of 
the optimization problem characterized by an inverse temperature f3. One considers 
the partition function 

z = f dwe- ~f3w.w IT 8(TI'W' w(xl') - /'i,), 

1'=1 

(1) 

where the SVM constraints are enforced strictly using the Heaviside step function 
8. Properties of w* can be computed from In Z and taking the limit f3 -t 00. 

To model the training data, we assume that the random and independent input 
components have zero mean and variance liN. This scaling assures that the vari
ance of w . w(xl') stays finite in the large N limit. For the target rule we assume 
that its deterministic part is given by the polynomial t(x) = Lp JCiPTBpxp with 
real parameters Bp. The magnitude of the contribution of each degree k to the 
value of t(x) is measured by the quantities 

1 '"' 2 Tk = Ck Nk ~ Bp 
p,lpl=k 

(2) 

where Nk = (N+; - I) is the number of terms in the sum. The degree of t(x) is L 
and lower than K, so TL > 0 and TL+l = ... = TK = O. Note, that this definition 
of t(x) ensures that any feature necessary for computing t(x) is available to the 
SVM. For brevity we assume that the constant term in t(x) vanishes (To = 0) and 
the normalization is Lk Tk = 1. 

2.2 The Noise Model 

In the deterministic case the label of a point x would simply be the sign of t(x). 
Here we consider a nondeterministic rule and the output label is obtained using a 
random variable Tu E {-1, 1} parameterized by a scalar u. The observable instances 
of the rule, and in particular the elements of the training set, are then obtained by 



independently sampling the random variable (x, Tt(x))' Simple examples are additive 
noise, Tt(x) = sgn(t(x) + 77), or multiplicative noise, Tt(x) = sgn(t(x)77), where 77 is 
a noise term independent of x. In general, we will assume that the noise does not 
systematically corrupt the deterministic component, formally 

1 
1> Prob(Tu = sgn(u)) >"2 for all u. (3) 

So sgn( t( x)) is the best possible prediction of the output label of x, and the minimal 
achievable generalization error is fmin = (8( -t(X)Tt(x)))x. In the limit of many 
input dimensions N, a central limit argument yields that for a typical target rule 
fmin = 2(8( -u)0(u))u , where u is zero mean and unit variance Gaussian. The 
function 0 will play a considerable role in the sequel. It is a symmetrized form of 
the probability p(u) that Tu is equal to 1, 0(u) = ~(p(u) + 1 - p( -u)). 

2.3 Order Parameter Equations 

One now evaluates the average of In Z (Eq. 1) over random drawings of training 
data for large N in terms of the order parameters 

Q (((W.1]i(X))2)Jw' q=((w)w·1]i(X))2)x and 

r Q-! «w ·1]i(x))w B ·1]i(x))x . (4) 

Here the thermal average over w refers to the Gibbs distribution (1). For the large 
N limit, a scaling of the training set size m must be specified, for which we make 
the generic Ansatz m = aNt, where I = 1, ... ,L. Focusing on the limit of large j3, 
where the density on the weight vectors converges to a delta peak and q -+ Q, we 
introduce the rescaled order parameter X = j3( Q - q) / St, with 

t 

St = i (1) - L Ci . (5) 
i=O 

Note that this scaling with St is only possible since the degree K of the kernel 
i(x, y) is greater than I, and thus St ¥- O. Finally, we obtain an expression for it = 
lim,B--+oo limN --+00 «In Z)) St / (j3Nt) , where the double brackets denote averaging over 
all training sets of size m . The value of it results from extremizing, with respect to 
r, q and X, the function 

it(r,q,X) = 

-aq /0(-u)G (ru + ~v -~)) 
X \ v0 u,v 

~ (~: - X ~ 1) (1- -(X -1)TzS~;Ct + L~=l TJ (6) 

where G(z) = 8(z)z2, and u, v are independent Gaussian random variables with 
zero mean and unit variance. 

Since the stationary value of it is finite , « w* . w*)) is of the order Nt. So the 
higher order components of w* are small, (W;)2 « 1 for Ipi > I, although these 
components playa crucial role in ensuring that a hyperplane separating the training 
points exists even for large a. But the key quantity obtained from Eq. (6) is the 
stationary value of r which determines the generalization error of the SVM via 
fg = (0(-u)8(ru + ~v))u,v, and in particular fg = fmin for r = 1. 



2.4 Universal Asymptotics 

We now specialize to the case that l equals L, the degree of the polynomial t(x) in 
the target rule. So m = aNL and for large a, after some algebra, Eq. (6) yields 

r = 1 - A(q*) ~ (7) 
4B(q*)2 a 

where B(q) (e(Y)8(-Y+Ii/yrj))}y and A(q) 

(e(Y)8(-Y+Ii/y7i) (_Y+Ii/y7i)2}y. Further q* = argminqqA(q), and con

sidering the derivatives of qA(q) for q --+ 0 and q --+ 00, one may show that 
condition (3) assures that qA(q) does have a minimum. 

Equation (7) shows that optimal generalization performance is achieved on this scale 
in the limit of large a. Remarkably, as long as K > L, the asymptote is invariant 
to the choice of the kernel since A(q) and B(q) are defined solely in terms of the 
target rule. 

3 Extension to other Kernels 

Our next goal is to understand cases where the kernel is a general function of the 
inner product or of the distance between the vectors. We still assume that the 
target rule is of finite complexity, i.e. defined by a polynomial and corrupted by 
noise and that the number of examples is polynomial in N. Remarkably, the more 
general kernels then reduce to the polynomial case in the thermodynamic limit. 

Since it is difficult to find a description of the Hilbert space for k( x, y) which is useful 
for a Statistical Physics calculation, our starting point is the dual representation: 
The weight vector w* defining the maximal margin hyperplane P can be written 
as a linear combination of the feature vectors w(xM) and hence w* . w(y) = IJ(Y), 
where 

m 

(8) 
M=l 

By standard results of convex optimization theory the AM are uniquely defined by the 
Kuhn-Tucker conditions AM ::::: 0, TMIJ(XM) ::::: Ii (for all patterns), further requiring 
that for positive AM the second of the two inequalities holds as an equality. One also 
finds that w* . w* = 2:;=1 AM and for a polynomial kernel we thus obtain a bound 

on 2:;=1 AM since w* . w* is O(m). 

We first consider kernels ¢(x· y), with a general continuous function ¢ of the inner 
product, and assume that ¢ can be approximated by a polynomial J in the sense 
that ¢(1) = J(l) and ¢(z) - J(z) = O(ZK) for z --+ O. Now, with a probability 
approaching 1 with increasing N, the magnitude of xM·xl/ is smaller than, say, N-1/3 
for all different indices {t and v as long as m is polynomial in N. So, considering Eq. 
(8), for large N the functions ¢(z) and J(z) will only be evaluated in a small region 
around zero and at z = 1 when used as kernels of a SVM trained on m = aN L 

examples. Using the fact that 2:;=1 AM = O(m) we conclude that for large Nand 
K > 3L the solution of the K uhn-Tucker conditions for J converges to the one for 
¢. So Eqs. (6,7) can be used to calculate the generalization error for ¢ by setting 
ttl = ¢(l) (O)/l! for l = 1, ... , L, when ¢ is an analytic function. Note that results in 
[4] assure that ttl ::::: 0 if the kernel ¢( X· y) is positive definite for all input dimensions 
N. Further, the same reduction to the polynomial case will hold in many instances 
where ¢ is not analytical but just sufficiently smooth close to O. 



3.1 RBF Kernels 

We next turn to radial basis function (RBF) kernels where k( x, y) depends only 
on the Euclidean distance between two inputs, k(x,y) = <I>(lx - YI2). For binary 
input components (Xi = ±N- 1/ 2 ) this is just the inner product case since <I>(lx -
Y12) = <I>(2 - 2x· y). However, for more general input distributions, e.g. Gaussian 
input components, the fluctuations of Ixl around its mean value 1 have the same 
magnitude as x . y even for large N, and an equivalence with inner product kernels 
is not evident. 

Our starting point is the observation that any kernel <I>(lx - Y12) which is positive 
definite for all input dimensions N is a positive mixture of Gaussians [6]. More 
precisely <I>(z) = fooo e-ez da(k) where the transform a(k) is nondecreasing. For 
the special case of a single Gaussian one easily obtains features 'IT p by rewriting 
<I>(lx - Y12) = e-lx-vI2/2 = e-1x12 /2ex've-lvI2 /2. Expanding the kernel eX ' v into 

polynomial features, yields the features 'IT p(x) = e- 1x12 /2x pl M for <I>(lx _ YI2). 
But, for a generic weight vector w in feature space, 

w· 'IT(x) = ~Wp'ITp(x) = e-~lxI2 ~wp M (9) 

is of order 1, and thus for large N the fluctuations of Ixl can be neglected. 

This line of argument can be extended to the case that the kernel is a finite mixture 
of Gaussians, <I>(z) = L~=l aie-'Y7z /2 with positive coefficients ai. Applying the 
reasoning for a single Gaussian to each term in the sum, one obtains a doubly 
indexed feature vector with components 'lTp,i(X) = e-'Y7IxI2/2(ai/';lpl/lpll)1/2xp. It 
is then straightforward to adapt the calculation of the partition function (Eq. 1-
6) to the doubly indexed features, showing that the kernel <I>(lx - Y12) yields the 
same generalization behavior as the inner product kernel <I> (2 - 2x . y). Based on the 
calculation, we expect the same equivalence to hold for general radial basis function 
kernels, i.e. an infinite mixture of Gaussians, even if it would be involved to prove 
that the limit of many Gaussians commutes with the large N limit. 

4 Simulations 

To illustrate the general results we first consider a scenario where a linear target rule, 
corrupted by additive Gaussian noise, is learned using different transcendental RBF 
kernels (Fig. 1) . While Eq. (7) predicts that the asymptote of the generalization 
error does not depend on the kernel, remarkably, the dependence on the kernel 
is very weak for all values of a. In contrast, the generalization error depends 
substantially on the nature of the noise process. Figure 2 shows the finding for 
a quadratic rule with additive noise for the cases that the noise is Gaussian and 
binary. In the Gaussian case a 1/a decay of Eg to Emin is found, whereas for binary 
noise the decay is exponential in a. Note that in both cases the order parameter r 
approaches 1 as 1/a. 

5 Summary 

The general characterization of learning curves obtained in this paper demonstrates 
that support vector machines with high order or even transcendental kernels have 
definitive advantages when the training data is noisy. Further the calculations lead
ing to Eq. (6) show that maximizing the margin is an essential ingredient of the 



approach: If one just chooses any hyperplane which classifies the training data cor
rectly, the scale of the learning curve is not determined by the target rule and far 
more examples are needed to achieve good generalization. Nevertheless our findings 
are at odds with many of the current theoretical motivations for maximizing the 
margin which argue that this minimizes the effective Vapnik Chervonenkis dimen
sion of the classifier and thus ensures fast convergence of the training error to the 
generalization error [1 , 2]. Since we have considered hard margins, in contrast to the 
generalization error, the training error is zero, and we find no convergence between 
the two quantities. But close to optimal generalization is achieved since maximizing 
the margin biases the SVM to explain as much as possible of the data in terms of a 
low order polynomial. While the Statistical Physics approach used in this paper is 
only exactly valid in the thermodynamic limit, the numerical simulations indicate 
that the theory is already a good approximation for a realistic number of input 
dimensions. 

We thank Rainer Dietrich for useful discussion and for giving us his code for the sim
ulations. The work of M.O. was supported by the EPSRC (grant no. GR/M81601) 
and the British Council (ARC project 1037); R.U. was supported by the DFG and 
the DAAD. 
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Figure 1: Linear target rule corrupted by additive Gaussian noise rJ ((rJ) = 0, \rJ2 ) = 
1/16) and learned using different kernels. The curves are the theoretical prediction; 
symbols show simulation results for N = 600 with Gaussian inputs and error bars 
are approximately the size of the symbols. (A) Gaussian kernel, <I>(z) = e-kz with 
k = 2/3. (B) Wiener kernel given by the non analytic function <I>(z) = e - e..jZ. We 
chose c ~ 0.065 so that the theoretical prediction for this case coincides with (A). 
(C) Gaussian kernel with k = 1/20, the influence of the parameter change on t he 
learning curve is minimal. (D) Perceptron, ¢(z) = z . Above a e ~ 7.5 vanishing 
training error cannot be achieved and the SVM is undefined. (E) Kernel invariant 
asymptote for (A,B,C). 
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Figure 2: A noisy quadratic rule (Tl = 0, T2 = 1) learned using the Gaussian kernel 
with k = 1/20. The upper curve (simulations.) is for additive Gaussian noise as 
in Fig. 1. The lower curve (simulations .) is for binary noise, rJ ± s with equal 
probability. We chose s ~ 0.20 so that the value of fmin is the same for the two 
noise processes. The inset shows that f9 decays as l/a for Gaussian noise, whereas 
an exponential decay is found in the binary case. The dashed curves are the kernel 
invariant asymptotes. The simulations are for N = 90 with Gaussian inputs, and 
standard errors are approximately the size of the symbols. 


