
A Parallel Mixture of SVMs for Very Large Scale 
Problems 

Ronan Collobert* 
Universite de Montreal, DIRG 
CP 6128, Succ. Centre-Ville 
Montreal, Quebec, Canada 

collober©iro.umontreal.ca 

Samy Bengio 
IDIAP 

CP 592, rue du Simp Ion 4 
1920 Martigny, Switzerland 

bengio©idiap.ch 

Yoshua Bengio 
Universite de Montreal, DIRG 
CP 6128, Succ. Centre-Ville 
Montreal, Quebec, Canada 

bengioy©iro.umontreal.ca 

Abstract 

Support Vector Machines (SVMs) are currently the state-of-the-art models for 
many classification problems but they suffer from the complexity of their train­
ing algorithm which is at least quadratic with respect to the number of examples. 
Hence, it is hopeless to try to solve real-life problems having more than a few 
hundreds of thousands examples with SVMs. The present paper proposes a 
new mixture of SVMs that can be easily implemented in parallel and where 
each SVM is trained on a small subset of the whole dataset. Experiments on a 
large benchmark dataset (Forest) as well as a difficult speech database, yielded 
significant time improvement (time complexity appears empirically to locally 
grow linearly with the number of examples) . In addition, and that is a surprise, 
a significant improvement in generalization was observed on Forest. 

1 Introduction 

Recently a lot of work has been done around Support Vector Machines [9], mainly due to 
their impressive generalization performances on classification problems when compared to other 
algorithms such as artificial neural networks [3 , 6]. However, SVMs require to solve a quadratic 
optimization problem which needs resources that are at least quadratic in the number of training 
examples, and it is thus hopeless to try solving problems having millions of examples using 
classical SVMs. 

In order to overcome this drawback, we propose in this paper to use a mixture of several SVMs, 
each of them trained only on a part of the dataset. The idea of an SVM mixture is not new, 
although previous attempts such as Kwok's paper on Support Vector Mixtures [5] did not train 
the SVMs on part of the dataset but on the whole dataset and hence could not overcome the 

'Part of this work has been done while Ronan Collobert was at IDIAP, CP 592, rue du Simplon 4, 
1920 Martigny, Switzerland. 



LUHe CUIHIJ1eJULY vrUUleUI lUI 1i:L1!!,e UaLaOeLO. vve vruvuoe Here a l:i't'fltpte 'fIte~ltuu LU LlalH oUCH 

a mixture, and we will show that in practice this method is much faster than training only 
one SVM, and leads to results that are at least as good as one SVM. We conjecture that the 
training time complexity of the proposed approach with respect to the number of examples is 
sub-quadratic for large data sets. Moreover this mixture can be easily parallelized, which could 
improve again significantly the training time. 

The organization of the paper goes as follows: in the next section, we briefly introduce the SVM 
model for classification. In section 3 we present our mixture of SVMs, followed in section 4 by 
some comparisons to related models. In section 5 we show some experimental results, first on a 
toy dataset, then on two large real-life datasets. A short conclusion then follows . 

2 Introduction to Support Vector Machines 

Support Vector Machines (SVMs) [9] have been applied to many classification problems, gener­
ally yielding good performance compared to other algorithms. The decision function is of the 
form 

(1) 

where x E ~d is the d-dimensional input vector of a test example, y E {-I, I} is a class label, Xi 

is the input vector for the ith training example, Yi is its associated class label, N is the number 
of training examples, K(x , Xi) is a positive definite kernel function , and 0: = {a1 , ... ,aN} and 
b are the parameters of the model. Training an SVM consists in finding 0: that minimizes the 
objective function 

N 1 N N 

Q(o:) = - 2..: a i + 22..:2..:aiajYiyjK(Xi , Xj) (2) 

subject to the constraints 

and 

i=l i=l j=l 

N 

2..: aiYi = 0 
i=l 

(3) 

O:S ai :S C Vi. (4) 
The kernel K(X,Xi) can have different forms, such as the Radial Basis Function (RBF): 

K(Xi, Xj) = exp (-llxi(T~ Xj112) (5) 

with parameter (T. 
Therefore, to train an SVM, we need to solve a quadratic optimization problem, where the 
number of parameters is N. This makes the use of SVMs for large datasets difficult: computing 
K(Xi' Xj) for every training pair would require O(N2) computation, and solving may take up 
to O(N3). Note however that current state-of-the-art algorithms appear to have training time 
complexity scaling much closer to O(N2 ) than O(N3) [2]. 

3 A New Conditional Mixture of SVMs 

In this section we introduce a new type of mixture of SVMs. The output of the mixture for an 
input vector X is computed as follows: 

f(x) = h (II wm(x)sm(x)) (6) 



wuen~ lVl 1::; LUe UUUIUel Ul eXvelL::; lU LUe lUIXLUle, ;;m~;,r;) 1::; LUe UULVUL Ul LUe 'fit exvelL 

given input x, wm(x) is the weight for the mth expert given by a "gater" module taking also 
x in input, and h is a transfer function which could be for example the hyperbolic tangent for 
classification tasks. Here each expert is an SVM, and we took a neural network for the gater in 
our experiments. In the proposed model, the gater is trained to minimize the cost function 

N 

C = L [f(xi) - Yi]2 . (7) 
i=l 

To train this model, we propose a very simple algorithm: 

1. Divide the training set into M random subsets of size near N j M. 

2. Train each expert separately over one of these subsets. 

3. Keeping the experts fixed, train the gater to minimize (7) on the whole training set. 

4. Reconstruct M subsets: for each example (Xi,Yi), 

• sort the experts in descending order according to the values Wm(Xi), 
• assign the example to the first expert in the list which has less than (NjM + c) 

examples*, in order to ensure a balance between the experts. 

5. If a termination criterion is not fulfilled (such as a given number of iterations or a 
validation error going up), goto step 2. 

Note that step 2 of this algorithm can be easily implemented in parallel as each expert can 
be trained separately on a different computer. Note also that step 3 can be an approximate 
minimization (as usually done when training neural networks). 

4 Other Mixtures of SVMs 

The idea of mixture models is quite old and has given rise to very popular algorithms, such 
as the well-known Mixture of Experts [4] where the cost function is similar to equation (7) but 
where the gater and the experts are trained, using gradient descent or EM, on the whole dataset 
(and not subsets) and their parameters are trained simultaneously. Hence such an algorithm 
is quite demanding in terms of resources when the dataset is large, if training time scales like 
O(NP) with p > 1. 

In the more recent Support Vector Mixture model [5], the author shows how to replace the 
experts (typically neural networks) by SVMs and gives a learning algorithm for this model. 
Once again the resulting mixture is trained jointly on the whole dataset , and hence does not 
solve the quadratic barrier when the dataset is large. 

In another divide-and-conquer approach [7], the authors propose to first divide the training set 
using an unsupervised algorithm to cluster the data (typically a mixture of Gaussians), then 
train an expert (such as an SVM) on each subset of the data corresponding to a cluster, and 
finally recombine the outputs of the experts. Here, the algorithm does indeed train separately the 
experts on small datasets, like the present algorithm, but there is no notion of a loop reassigning 
the examples to experts according to the prediction made by the gater of how well each expert 
performs on each example. Our experiments suggest that this element is essential to the success 
of the algorithm. 

Finally, the Bayesian Committee Machine [8] is a technique to partition the data into several 
subsets, train SVMs on the individual subsets and then use a specific combination scheme based 
on the covariance of the test data to combine the predictions. This method scales linearly in the 

'where c is a small positive constant. In the experiments, c = 1. 



llUll1ue1 U1 Lld111111!!, UdLd, UUL 1~ 111 1dCL d HUnIjU·uc~·tVt; ll1eLllUU ~ 1L CdllllUL Uve1dLe Ull d ~U1!!,1e 

test example. Like in the previous case, this algorithm assigns the examples randomly to the 
experts (however the Bayesian framework would in principle allow to find better assignments). 

Regarding our proposed mixture of SVMs, if the number of experts grows with the number 
of examples, and the number of outer loop iterations is a constant, then the total training 
time of the experts scales linearly with the number of examples. Indeed, &iven N the total 
number of examples, choose the number of expert M such that the ratio M is a constant r; 
Then, if k is the number of outer loop iterations, and if the training time for an SVM with r 
examples is O(ri3 ) (empirically f3 is slightly above 2), the total training time of the experts is 
O(kri3 * M) = O(kri3- 1 N), where k, rand f3 are constants, which gives a total training time 
of O(N). In particular for f3 = 2 that gives O(krN). The actual total training time should 
however also include k times the training time of the gater, which may potentially grow more 
rapidly than O(N). However, it did not appear to be the case in our experiments, thus yielding 
apparent linear training time. Future work will focus on methods to reduce the gater training 
time and guarantee linear training time per outer loop iteration. 

5 Experiments 

In this section, we present three sets of experiments comparing the new mixture of SVMs to 
other machine learning algorithms. Note that all the SVMs in these experiments have been 
trained using SVMTorch [2] . 

5.1 A Toy Problem 

In the first series of experiments, we first tested the mixture on an artificial toy problem for 
which we generated 10,000 training examples and 10,000 test examples. The problem had two 
non-linearly separable classes and had two input dimensions. On Figure 1 we show the decision 
surfaces obtained first by a linear SVM, then by a Gaussian SVM, and finally by the proposed 
mixture of SVMs. Moreover, in the latter , the gater was a simple linear function and there were 
two linear SVMs in the mixturet . This artificial problem thus shows clearly that the algorithm 
seems to work, and is able to combine, even linearly, very simple models in order to produce a 
non-linear decision surface. 

5.2 A Large-Scale Realistic Problem: Forest 

For a more realistic problem, we did a series of experiments on part of the UCI Forest dataset+. 
We modified the 7-class classification problem into a binary classification problem where the 
goal was to separate class 2 from the other 6 classes. Each example was described by 54 input 
features, each normalized by dividing by the maximum found on the training set. The dataset 
had more than 500,000 examples and this allowed us to prepare a series of experiments as follows : 

• We kept a separate test set of 50,000 examples to compare the best mixture of SVMs 
to other learning algorithms. 

• We used a validation set of 10,000 examples to select the best mixture of SVMs, varying 
the number of experts and the number of hidden units in the gater. 

• We trained our models on different training sets, using from 100,000 to 400,000 examples. 

• The mixtures had from 10 to 50 expert SVMs with Gaussian kernel and the gater was 
an MLP with between 25 and 500 hidden units. 

tNote that the transfer function hO was still a tanhO. 
tThe Forest dataset is available on the VCI website at the following address: 

ftp://ftp.ics.uci.edu/pub/rnachine-learning-databases/covtype/covtype.info. 



(a) Linear SVM (b) Gaussian SVM (c) Mixture of two linear 
SVMs 

Figure 1: Comparison of the decision surfaces obtained by (a) a linear SVM, (b) a Gaussian 
SVM, and (c) a linear mixture of two linear SVMs, on a two-dimensional classification toy 
problem. 

Note that since the number of examples was quite large, we selected the internal training pa­
rameters such as the (J of the Gaussian kernel of the SVMs or the learning rate of the gater 
using a held-out portion of the training set. We compared our models to 

• a single MLP, where the number of hidden units was selected by cross-validation between 
25 and 250 units, 

• a single SVM, where the parameter of the kernel was also selected by cross-validation, 

• a mixture of SVMs where the gater was replaced by a constant vector, assigning the 
same weight value to every expert. 

Table 1 gives the results of a first series of experiments with a fixed training set of 100,000 
examples. To select among the variants of the gated SVM mixture we considered performance 
over the validation set as well as training time. All the SVMs used (J = 1. 7. The selected model 
had 50 experts and a gater with 150 hidden units. A model with 500 hidden units would have 
given a performance of 8.1 % over the test set but would have taken 621 minutes on one machine 
(and 388 minutes on 50 machines). 

Train Test Time (minutes) 
Error (%) (1 cpu) (50 cpu) 

one MLP 17.56 18.15 12 
one SVM 16.03 16.76 3231 
uniform SVM mixture 19.69 20.31 85 2 
gated SVM mixture 5.91 9.28 237 73 

Table 1: Comparison of performance between an MLP (100 hidden units), a single SVM, a 
uniform SVM mixture where the gater always output the same value for each expert, and finally 
a mixture of SVMs as proposed in this paper. 

As it can be seen, the gated SVM outperformed all models in terms of training and test error. 
Note that the training error of the single SVM is high because its hyper-parameters were selected 
to minimize error on the validation set (other values could yield to much lower training error but 
larger test error). It was also much faster, even on one machine, than the SVM and since the 
mixture could easily be parallelized (each expert can be trained separately) , we also reported 



Lue LIUIe IL LUUK LU LldUI UU ClV UldCUIUei:>. .1U d UIi:>L dLLeUIVL LU UUUeli:>LdUU LUei:>e lei:>UILi:>, uue 

can at least say that the power of the model does not lie only in the MLP gater, since a single 
MLP was pretty bad, it is neither only because we used SVMs, since a single SVM was not 
as good as the gated mixture, and it was not only because we divided the problem into many 
sub-problems since the uniform mixture also performed badly. It seems to be a combination of 
all these elements. 

We also did a series of experiments in order to see the influence of the number of hidden units 
of the gater as well as the number of experts in the mixture. Figure 2 shows the validation error 
of different mixtures of SVMs, where the number of hidden units varied from 25 to 500 and the 
number of experts varied from 10 to 50. There is a clear performance improvement when the 
number of hidden units is increased, while the improvement with additional experts exists but 
is not as strong. Note however that the training time increases also rapidly with the number of 
hidden units while it slightly decreases with the number of experts if one uses one computer per 
expert. 

2!'50 

Validation error as a function of the number of hidden units 
of the gater and the number of experts 

100 
150200 

250 

Number of hidden 
units of the gater 500 10 

50 

Figure 2: Comparison of the validation error of different mixtures of SVMs with various number 
of hidden units and experts. 

In order to find how the algorithm scaled with respect to the number of examples, we then 
compared the same mixture of experts (50 experts, 150 hidden units in the gater) on different 
training set sizes. Table 3 shows the validation error of the mixture of SVMs trained on training 
sets of sizes from 100,000 to 400,000. It seems that, at least in this range and for this particular 
dataset, the mixture of SVMs scales linearly with respect to the number of examples, and not 
quadratically as a classical SVM. It is interesting to see for instance that the mixture of SVMs 
was able to solve a problem of 400,000 examples in less than 7 hours (on 50 computers) while it 
would have taken more than one month to solve the same problem with a single SVM. 

Finally, figure 4 shows the evolution of the training and validation errors of a mixture of 50 
SVMs gated by an MLP with 150 hidden units, during 5 iterations of the algorithm. This 
should convince that the loop of the algorithm is essential in order to obtain good performance. 
It is also clear that the empirical convergence of the outer loop is extremely rapid. 

5.3 Verification on Another Large-Scale Problem 

In order to verify that the results obtained on Forest were replicable on other large-scale prob­
lems, we tested the SVM mixture on a speech task. We used the Numbers95 dataset [1] and 



450,----~--~-~--~-~-_ 

400 

350 

_300 
c: 
E 
-;250 
E 
i= 200 

150 

100 

1~ 2 2~ 3 3~ 4 
Number of train examples x 105 

Figure 3: Comparison of the training time 
of the same mixture of SVMs (50 experts, 
150 hidden units in the gater) trained on 
different training set sizes, from 100,000 to 
400,000. 

14 

13 

12 

11 

~10 
g 9 
w 

8 

7 

6 

Error as a function of the number of training iterations 

1

- - - Train error 
- Validation Error 

~L---~2~--~3---~4---~5 

Number of training iterations 

Figure 4: Comparison of the training and 
validation errors of the mixture of SVMs as 
a function of the number of training itera­
tions. 

turned it into a binary classification problem where the task was to separate silence frames from 
non-silence frames . The total number of frames was around 540,000 frames. The training set 
contained 100,000 randomly chosen frames out of the first 400,000 frames. The disjoint valida­
tion set contained 10,000 randomly chosen frames out of the first 400,000 frames also. Finally, 
the test set contained 50,000 randomly chosen frames out of the last 140,000 frames. Note that 
the validation set was used here to select the number of experts in the mixture, the number of 
hidden units in the gater, and a. Each frame was parameterized using standard methods used 
in speech recognition (j-rasta coefficients, with first and second temporal derivatives) and was 
thus described by 45 coefficients, but we used in fact an input window of three frames, yielding 
135 input features per examples. 

Table 2 shows a comparison between a single SVM and a mixture of SVMs on this dataset. The 
number of experts in the mixture was set to 50, the number of hidden units of the gater was set 
to 50, and the a of the SVMs was set to 3.0. As it can be seen, the mixture of SVMs was again 
many times faster than the single SVM (even on 1 cpu only) but yielded similar generalization 
performance. 

Train Test Time (minutes) 
Error (%) (1 cpu) (50 cpu) 

one SVM 0.98 7.57 6787 
gated SVM mixture 4.41 7.32 851 65 

Table 2: Comparison of performance between a single SVM and a mixture of SVMs on the 
speech dataset. 

6 Conclusion 

In this paper we have presented a new algorithm to train a mixture of SVMs that gave very good 
results compared to classical SVMs either in terms of training time or generalization performance 
on two large scale difficult databases. Moreover , the algorithm appears to scale linearly with 
the number of examples, at least between 100,000 and 400,000 examples. 



.1 uebe lebUILb dle eXLleIuelY e UCUUli:t!!,l1l!!, dllU bu!!,!!,ebL LUi:tL Lue plupUbeu lueLuuu CUUIU dllUW 

training SVM-like models for very large multi-million data sets in a reasonable time. If training 
of the neural network gater with stochastic gradient takes time that grows much less than 
quadratically, as we conjecture it to be the case for very large data sets (to reach a "good enough" 
solution), then the whole method is clearly sub-quadratic in training time with respect to the 
number of training examples. Future work will address several questions: how to guarantee 
linear training time for the gater as well as for the experts? can better results be obtained by 
tuning the hyper-parameters of each expert separately? Does the approach work well for other 
types of experts? 

Acknowledgments 

RC would like to thank the Swiss NSF for financial support (project FN2100-061234.00). YB 
would like to thank the NSERC funding agency and NCM2 network for support. 

References 

[1] RA. Cole, M. Noel, T. Lander, and T. Durham. New telephone speech corpora at CSLU. 
Proceedings of the European Conference on Speech Communication and Technology, EU­
ROSPEECH, 1:821- 824, 1995. 

[2] R Collobert and S. Bengio. SVMTorch: Support vector machines for large-scale regression 
problems. Journal of Machine Learning Research, 1:143- 160, 200l. 

[3] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273- 297, 1995. 

[4] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive 
mixtures of local experts. Neural Computation, 3(1):79- 87, 1991. 

[5] J. T. Kwok. Support vector mixture for classification and regression problems. In Proceedings 
of the International Conference on Pattern Recognition (ICPR) , pages 255-258, Brisbane, 
Queensland, Australia, 1998. 

[6] E. Osuna, R Freund, and F. Girosi. Training support vector machines: an application to 
face detection. In IEEE conference on Computer Vision and Pattern Recognition, pages 
130- 136, San Juan, Puerto Rico, 1997. 

[7] A. Rida, A. Labbi, and C. Pellegrini. Local experts combination trough density decomposi­
tion. In International Workshop on AI and Statistics (Uncertainty'99). Morgan Kaufmann, 
1999. 

[8] V. Tresp. A bayesian committee machine. Neural Computation, 12:2719-2741,2000. 

[9] V. N. Vapnik. The nature of statistical learning theory. Springer, second edition, 1995. 


