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Abstract

This paper proposes an approach to classification of adjacent segments
of a time series as being either of

�
classes. We use a hierarchical model

that consists of a feature extraction stage and a generative classifier which
is built on top of these features. Such two stage approaches are often used
in signal and image processing. The novel part of our work is that we link
these stages probabilistically by using a latent feature space. To use one
joint model is a Bayesian requirement, which has the advantage to fuse
information according to its certainty.
The classifier is implemented as hidden Markov model with Gaussian
and Multinomial observation distributions defined on a suitably chosen
representation of autoregressive models. The Markov dependency is mo-
tivated by the assumption that successive classifications will be corre-
lated. Inference is done with Markov chain Monte Carlo (MCMC) tech-
niques. We apply the proposed approach to synthetic data and to classi-
fication of EEG that was recorded while the subjects performed different
cognitive tasks. All experiments show that using a latent feature space
results in a significant improvement in generalization accuracy. Hence
we expect that this idea generalizes well to other hierarchical models.

1 Introduction

Many applications in signal or image processing are hierarchical in the sense that a proba-
bilistic model is built on top of variables that are the coefficients of some feature extraction
technique. In this paper we consider a particular problem of that kind, where a Gaussian
and Multinomial observation hidden Markov model (GMOHMM) is used to discriminate
coefficients of an Auto Regressive (AR) process as being either of

�
classes. Bayesian

inference is known to give reasonable results when applied to AR models ([RF95]). The
situation with classification is similar, see for example the seminal work by [Nea96] and
[Mac92]. Hence we may expect to get good results if we apply Bayesian techniques to
both stages of the decision process separately. However this is suboptimal since it meant
to establish a no probabilistic link between feature extraction and classification. Two argu-
ments suggest the building of one probabilistic model which combines feature extraction
and classification:

� Since there is a probabilistic link, the generative classifier acts as a prior for fea-



ture extraction. The advantage of using this prior is that it naturally encodes our
knowledge about features as obtained from training data and other sensors. Obvi-
ously this is the only setup that is consistent with Bayesian theory ([BS94]).

� Since all inferences are obtained from marginal distributions, information is com-
bined according to its certainty. Hence we expect to improve results since infor-
mation from different sensors is fused in an optimal manner.

2 Methods

2.1 A Gaussian and Multinomial observation hidden Markov model

As we attempt to classify adjacent segments of a time series, it is very likely that we find
correlations between successive class labels. Hence our model has a hidden Markov model
([RJ86]) like architecture, with diagonal Gaussian observation models for continuous vari-
ables and Multinomial observation models for discrete variables. We call the architec-
ture a Gaussian and Multinomial observation hidden Markov model or GMOHMM for
short. Contrary to the classical approach, where each class is represented by its own trained
HMM, our model has class labels which are child nodes of the hidden state variables. Fig-
ure 1 shows the directed acyclic graph (DAG) of our model. We use here the convention
found in [RG97], where circular nodes are latent and square nodes are observed variables.

2.1.1 Quantities of interest

We regard all variables in the DAG that represent the probabilistic model of the time series
as quantities of interest. These are the hidden states, ��� , the variables of the latent feature
space, � ��� � , � ��� � and � ��� � , the class labels, 	 � , the sufficient statistics of the AR process, 
 ��� � ,
and the segments of the time series, ����� � . The DAG shows the observation model only for
the  -th state. We have 
 latent feature variables, � ��� � , which represent the coefficients of
the preprocessing model for of the  -th segment at sensor 
 . The state conditional distri-
butions, ����� ��� ��� � ��� , are modeled by diagonal Gaussians. Variable � ��� � is the latent model
indicator which represents the model order of the preprocessing model and hence the di-
mension of � ��� � . The corresponding observation model ��������� � � ��� � is a Multinomial-one
distribution. The third observation, 	 � , represents the class label of the  -th segment. The
observation model for ����	 � � � ��� is again a Multinomial-one distribution. Note that depend-
ing on whether we know the class label or not, 	�� can be a latent variable or observed. The
child node of � ��� � and ����� � is the observed variable 
���� � , which represents a sufficient statis-
tics of the corresponding time series segment. The proposed approach requires to calculate
the likelihoods ��������� � � � ��� ��� ����� � �!  � 
 repeatedly. Hence using the sufficient statistics is a
computational necessity. Finally we use �"��� � to represent the precision of the residual noise
model. The noise level is a nuisance parameter which is integrated over.

2.1.2 Model coefficients

Since we integrate over all unknown quantities, there is no conceptual difference between
model coefficients and the variables described above. However there is a qualitative dif-
ference. Model parameters exist only once for the entire GMOHMM, whereas there is an
individual quantity of interest for every segment  . Furthermore the model coefficients are
only updated during model inference whereas all quantities of interest are updated during
model inference and for prediction. We have three different prior counts, #%$ , #�& and #�' ,
which define the Dirichlet priors of the corresponding probabilities. Variable ( denotes
the transition probabilities, that is )*��� �,+�- � � ���/. (1032 . The model assumes a stationary hid-
den state sequence. This allows us to obtain the unconditional prior probability of states �4�
from the recurrence relation 56$7���8� �/. (159���8��:;- � . The prior probability of the first hidden



state, 5 $ ��� - � , is therefore the normalized eigenvector of the transition probability matrix
( that corresponds to the eigenvalue

�
. Variable � represents the probabilities of class 	 � ,

)*��	 � � � ��� . � 032 , which are conditional on � � as well. The prior probabilities for observ-
ing the model indicator ����� � are represented by 5 � . The probability )*������� � � �8� � . 5 � � 0 2 is
again conditional on the state � � . As was mentioned above, ����� � represents the model order
of the time series model. Hence another interpretation of 5 � is that of state dependent prior
probabilities for observing particular model orders. The observation models for � ��� � are
dynamic mixtures of Gaussians, with one model for each sensor 
 . Variables � � and �1�
represent the coefficients of all Gaussian kernels. Hence ����� ��� � � � � � �1� � �8� � ����� � � is a ����� � -
variate Gaussian distribution. Another interpretation is that the discrete indicator variables
�8� and ����� � determine together with � � and �1� a Gaussian prior over � ��� � . The nodes � � ,� � , � � , � � , 	�� and 
/� define a hierarchical prior setting which is discussed below.

s1 ϕ

s

ϕ

λλ

λ 

s

λ 

δP

1h1g

1α
1Σ

β1

1ξ

1κ

δ δT

di−1

t iT W

di+1i
d

W

1µ

i,1

i,1

Xi,1

i,1I i,1 P i,s

Xi,s

I i,s

Pδ

P

κs

ξs

α s

µs

Σs

sβ

hsgs

i,s

i,s

α α

Figure 1: This figure illustrates the details of the proposed model as a directed acyclic
graph. The graph shows the model parameters and all quantities of interest: � � denotes the
hidden states of the HMM; 	 � are the class labels of the corresponding time series segments;
� ��� � are the latent coefficients of the time series model and ����� � the corresponding model
indicator variables; � ��� � is the precision of the residual noise. For tractable inference, we
extract from the time series � ��� � the sufficient statistics 
 ��� � . All other variables denote
model coefficients: ( are the transition probabilities; � are the probabilities for class 	3� ;
� � and �1� are mean vectors and covariance matrices of the Gaussian observation model
for sensor 
 ; and ) � are the probabilities for observing � ��� � .

2.2 Likelihood and priors for the GMOHMM

Suppose that we are provided with � segments of training data, � .� � ��� �   � 
�� . The
likelihood function of the GMOHMM parameters � is then obtained by summation over all
possible sequences, � , of latent states, � � . The sums and integrals under the product make
the likelihood function of Equation (1) highly nonlinear. This may be resolved by using
Gibbs sampling [GG84], which uses tricks similar to those of the expectation maximization
algorithm.



)*� � � � �/.������ )*��	�- � ��- ����
�
	�- ������������
� � 	������ ����� - � � � � -3� � � �"- � � � ��-3� � � ��- � � � -3� � � �"- � ��� (1)

����
� 	"! � )*��	 � � ��� � ����: - ����

�
	�- � �������� 2 � � 	��#�$� �����7��� � � � ��� � � � ��� � � ����� � � ��� � � � ��� � � � ��� � �%�&��'
Gibbs sampling requires that we obtain full conditional distributions1 we can sample from.
The conjugate priors are adopted from [RG97]. Below square brackets and index ( are
used to denote a particular component of a vector or matrix. Each component mean, � � � 032 ,
is given a Gaussian prior: � � � 0 2*),+ -�� � ��� � : -� � , with

� � denoting the mean and � : -� the
inverse covariance matrix. As we use diagonal covariance matrices, we may give each
diagonal element an independent Gamma prior: �*� � 0 2.- ( � (0/ :;- )�1 � � � � � � - (0/ � , where � �
denotes the shape parameter and � � - (0/ denotes the inverse scale parameter. The hyper-
parameter, 2!� , gets a component wise Gamma hyper prior: � � - (0/ )31 � 	�� � 
/�4- (0/ � . The state
conditional class probabilities, � 032 , get a Dirichlet prior: � 032 )65 ��# & � ' ' � # & � . The
transition probabilities, ( 0 2 , get a Dirichlet prior: ( 0 2 )75 ��#�$ � ' ' � #�$ � . The probabilities
for observing different model orders, 5 �3� 0 2 , depend on the state � � . Their prior is Dirichlet
5 � � 032 )85 ��# ' � '9' � # '/� . The precision � ��� � gets a Jeffreys’ prior, i.e. the scale parameter :<;
is set to 0.

Values for � � are between
�

and = , 	8� is set between > ' = and
�

and 
/�?- (0/ is typically be-
tween

�A@AB - (?/ ! and
� > @AB - (?/ ! , with

B - (0/ denoting the input range of maximum likelihood
estimates for � ��� � - (0/   . The mean,

� � , is the midpoint of the maximum likelihood esti-
mates � ��� � - (0/   . The inverse covariance matrix � �A- (?/ . �4@?B �C- (0/ ! , where

B �A- (0/ is again
the range of the estimates at sensor 
 . We set the prior counts #�& and #�$ and #�' to

�
.

2.3 Sampling from the posterior

During model inference we need to update all unobserved variables of the DAG, whereas
for predictions we update only the variables summarized in section 2.1.1. Most of the
updates are done using the corresponding full conditional distributions, which have the
same functional forms as the corresponding priors. These full conditionals follow closely
from what was published previously in [Syk00], with some modifications necessary (see
e.g. [Rob96]), because we need to consider the Markov dependency between successive
hidden states. As the derivations of the full conditionals do not differ much from previous
work, we will omit them here and instead concentrate on an illustration how to update the
latent feature space, � � ��� ��� ����� � �   � 
 .
2.3.1 A representation of the latent feature space

The AR model in Equation (2) is a linear regression model. We use :<D� 2 � � to denote the
AR coefficients, ����� � to denote the model order and E4- 	�/ to denote a sample from the noise
process, which we assume to be Gaussian with precision � ��� � .F - 	�/ .HG � 2 � ��D 	�- : D� 2 � � F - 	 GJI /LK�E4- 	�/ (2)

As is indicated by the subscript � ��� � , the value of the I -th AR coefficient depends on the
model order. Hence AR coefficients are not a convenient representation of the latent feature

1These are the distributions obtained when we condition on all other variables of the DAG.



space. A much more convenient representation is provided by using reflection coefficients,� , (statistically speaking they are partial correlation coefficients), which relate to AR coef-
ficients via the order recursive Levinson algorithm. Below we use vector notation and the
symbol � �� 2 � � to denote the upside down version of the AR coefficient vector.� � 2 � � +�- .

� � � 2 � � K ��� � 2 � � +�-�� � �� 2 � ���� � 2 � � +�-�� 	 (3)

We expect to observe only such data that was generated from dynamically stable AR pro-
cesses. For such processes, the latent density is defined on 
 ��� ��� - G � � � / � 2 � ���� � 2 � � . This
is in contrast with the proposed DAG, where we use a finite Gaussian mixture as proba-
bilistic model for the latent variable, which is is defined on ������� � � � 2 � � . In order to avoid
this mismatch, we reparameterise the space of reflection coefficients by applying �����������! ,
to obtain a more convenient representation of the latent features.

� ��� � . �����������! ;�"
 ��� � � (4)

2.3.2 Within dimensional updates

The within dimensional updates can be done with a conventional Metropolis Hastings step.
Integrating out � ��� � , we obtain a Student t distributed likelihood function of the AR coef-
ficients. In order to obtain likelihood ratio 1, we propose from the multivariate Student-t
distribution shown below, reparameterise in terms of reflection coefficients and apply the�����������! transformation.

�$#��� � . �����������! ;�"
/�%�&#��� � � � (5)

where� #��� � ) ' 	�(��*)� � � �
with)� . + :;-�,
� . + :;- � B �*G , $ + :;-�, �=�-- . � G ����� �

The proposal uses + to denote the � ��� � -dimensional sample auto-covariance matrix,
B � is

the sample variance,
, . - B - � ' '9' � B � 2 � � +�- / $ is a vector of sample autocorrelations at lags�

to ����� � K � and N denotes the number of samples of the time series � ��� � . The proposal in
Equation (5) gives a likelihood ratio of

�
. The corresponding acceptance probability is

: .�.0/ �2134 � � ��� � #��� � �655587 ��92 � �7 � 92 � � 555��� � ��� � � 555 7 � 2 � �7 � 2 � � 555
:<;= ' (6)

The determinant of the Jacobian arises because we transform the AR coefficients using
Equations (3) and (4).

2.3.3 Updating model orders

Updating model orders requires us to sample across different dimensional parameter
spaces. One way of doing this is by using the reversible jump MCMC which was re-
cently proposed in [Gre95]. We implement the reversible jump move from parameter space> ��� �3� � 2 � � to parameter space

> ��� � � � 2 � � +�- as partial proposal. That is we propose a reflection
coefficient from a distribution that is conditional on the AR coefficient �/��� � . Integrating



out the precision of the noise model �!��� � we obtain again a Student-t distributed likelihood.
This suggests the following proposal:

� #��� � . - � ��� ��� �����������! ;� � � / (7)

where� ) ' 	 ( � �� � � �
with�� . G � !� -� .

� � G �� != � � G � �- . � G �� - . B � K =�� $��� � , � K2� $��� � + � � ��� �� ! . B � +"! K = , $� ����� � � K2� $��� � + �*� ��� � � '
Equation (7) makes use of the sufficient statistics of the ����� � K � -dimensional AR process,

 . � � � B � � ' ' � B � +"! � . We use � to denote the number of observations and

B��
to denote

the estimated auto covariance at time lag � to obtain
, $� . - B - � ' ' � B � +�- / and +�� as � ��� � di-

mensional sample covariance matrix. Assuming that the probability of proposing this move
is independent of ����� � , the proposal from

> ��� �3� � 2 � � to
> ��� � � � 2 � � +�- has acceptance probability

: . . / � � � �	� � G � !-� !!�
 :��� ���� � = 1 � � :;-! �1 � � ! � ��� � #��� � � ��������� � K � �
����� ��� � � � � G � ! � ��������� � � �8' (8)

If we attempt an update from
> ��� � � � 2 � � +�- to

> ��� � � � 2 � � , we have to invert the second argument
of the .0/ � operation in Equation (8).

3 Experiments

Convergence of all experiments is analysed by applying the method suggested in [RL96]
to the sequence of observed data likelihoods (equation (1), when filling in all variables).

3.1 Synthetic data

Our first evaluation uses synthetic data. We generate a first order Markov sequence as target
labels (2 state values) with 200 samples used for training and 600 used for testing. Each
sample is used as label of a segment with 200 samples from an auto regressive process. If
the label is

�
, we generate data using reflection coefficients � > ' � � G > ' � � > ' � � . If the label is= , we use the model � > ' � � G > '�� � > ' � � . The driving noise has variance

�
. Due to sampling

effects we obtain a data set with Bayes error � > . In order to make the problem more
realistic, we use a second state sequence to replace =0>�� of the segments with white noise.
These “artifacts” are not correlated with the class labels.

In order to assess the effect of using a latent feature space, we perform three different
tests: In the first run we use conventional feature extraction with a third order model and
estimates found with maximum likelihood; In a second run we use again a third order
model but integrate over feature values; Finally the third test uses the proposed architecture
with a prior over model order which is “flat” between > and � .
When compared with conditioning on feature estimates, the latent features show increased
likelihood. The likelihood gets even larger when we regard both the feature values and the



model orders of the preprocessing stage as random variables. As can be seen in figure 2,
this effect is also evident when we look at the generalization probabilities which become
larger as well. We explain this by sharper “priors” over feature values and model orders,
which are due to the information provided by temporal context2 of every segment. This
reduces the variance of the observation models which in turn increases likelihoods and
target probabilities. Table 1 shows that these higher probabilities correspond to a significant
improvement in generalization accuracy.

50 100 150 200 250 300 350 400 450 500 550 600
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1
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Probabilities from integrating over features
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0.5

1
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Figure 2: This figure shows the generalization probabilities obtained with different set-
tings. We see that the class probabilities get larger when we regard features as random
variables. This effect is even stronger when both the features and the model orders are
random variables.

3.2 Classification of cognitive tasks

The data used in these experiments is EEG recorded from 5 young, healthy and untrained
subjects while they perform different cognitive tasks. We classify 2 task pairings: auditory-
navigation and left motor-right motor imagination. The recordings were taken from 3 elec-
trode sites: T4, P4 (right tempero-parietal for spatial and auditory tasks), C3’ , C3” (left
motor area for right motor imagination) and C4’ , C4” (right motor area for left motor
imagination). The ground electrode was placed just lateral to the left mastoid process. The
data were recorded using an ISO-DAM system (gain of ����� and fourth order band pass
filter with pass band between ����� Hz and ����� Hz). These signals were sampled with 384
Hz and 12 bit resolution. Each cognitive experiment was performed �	� times for 
 seconds.

Classification uses again the same settings as with the synthetic problem. The summary
in table 1 shows results obtained from ��� fold cross validation, where one experiment is
used for testing whereas all remaining data is used for training. We observe again sig-
nificantly improved results when we regard features and model orders as latent variables.
The values in brackets are the significance levels for comparing integration of features with
conditioning and full integration with integration over feature values only.

4 Discussion

We propose in this paper a novel approach to hierarchical time series processing which
makes use of a latent feature representation. This understanding of features and model
orders as random variables is a direct consequence of applying Bayesian theory. Empirical

2In a multi sensor setting there is spatial context as well.



Table 1: Generalization accuracies of different experiments

experiment conditioning marginalize features full integration
synthetic � �L' � � ���L' =�� ( � ' ��� � > : -�� ) � � '�� � ( > ' >0> = )

left vs. right motor � � ' � � � �<' � � ( � ' = � � > :�� ) � � ' � � � ( > ' >�� � )
auditory vs. navigation � � ' = � � � ' � � � > ' > = � � � '�� � ( = ' ��� � > :�� )

evaluations show that theoretical arguments are confirmed by significant improvements in
generalization accuracy. The only disadvantage of having a latent feature space is that
all computations get more involved, since there are additional variables that have to be
integrated over. However this additional complexity does not render the method intractable
since the algorithm remains polynomial in the number of segments to be classified. Finally
we want to point out that the improvements observed in our results can only be attributed
to the idea of using a latent feature space. This idea is certainly not limited to time series
classification and should generalize well to other hierarchical architectures.
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