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Abstract

We describe an algorithm for automatically learning discriminative com-
ponents of objects with SVM classifiers. It is based on growing image
parts by minimizing theoretical bounds on the error probability of an
SVM. Component-based face classifiers are then combined in a second
stage to yield a hierarchical SVM classifier. Experimental results in face
classification show considerable robustness against rotations in depth and
suggest performance at significantly better level than other face detection
systems. Novel aspects of our approach are: a) an algorithm to learn
component-based classification experts and their combination, b) the use
of 3-D morphable models for training, and ¢) a maximum operation on
the output of each component classifier which may be relevant for bio-
logical models of visual recognition.

1 Introduction

We study the problem of automatically synthesizing hierarchical classifiers by learning dis-
criminative object parts in images. Our motivation is that most object classes (e.g. faces,
cars) seem to be naturally described by a few characteristic parts or components and their
geometrical relation. Greater invariance to viewpoint changes and robustness against par-
tial occlusions are the two main potential advantages of component-based approaches com-
pared to a global approach.

The first challenge in developing component-based systems is how to choose automatically
a set of discriminative object components. Instead of manually selecting the components,
it is desirable to learn the components from a set of examples based on their discriminative
power and their robustness against pose and illumination changes. The second challenge is
to combine the component-based experts to perform the final classification.



2 Background

Global approaches in which the whole pattern of an object is used as input to a single
classifier were successfully applied to tasks where the pose of the object was fixed. In [6]
Haar wavelet features are used to detect frontal and back views of pedestrians with an SVM
classifier. Learning-based systems for detecting frontal faces based on a gray value features
are described in [14, 13, 10, 2].

Component-based techniques promise to provide more invariance since the individual com-
ponents vary less under pose changes than the whole object. Variations induced by pose
changes occur mainly in the locations of the components. A component-based method for
detecting faces based on the empirical probabilities of overlapping rectangular image parts
is proposed in [11]. Another probabilistic approach which detects small parts of faces is
proposed in [4]. It uses local feature extractors to detect the eyes, the corner of the mouth,
and the tip of the nose. The geometrical configuration of these features is matched with
a model configuration by conditional search. A related method using statistical models is
published in [9]. Local features are extracted by applying multi-scale and multi-orientation
filters to the input image. The responses of the filters on the training set are modeled as
Gaussian distributions. In [5] pedestrian detection is performed by a set of SVM classifiers
each of which was trained to detect a specific part of the human body.

In this paper we present a technique for learning relevant object components. The technique
starts with a set of small seed regions which are gradually grown by minimizing a bound
on the expected error probability of an SVM. Once the components have been determined,
we train a system consisting of a two-level hierarchy of SVM classifiers. First, component
classifiers independently detect facial components. Second, a combination classifier learns
the geometrical relation between the components and performs the final detection of the
object.

3 Learning Componentswith Support Vector M achines

3.1 Linear Support Vector Machines

Linear SVMs [15] perform pattern recognition for two-class problems by determining the
separating hyperplane with maximum distance to the closest points in the training set.
These points are called support vectors. The decision function of the SVM has the form:
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where £ is the number of data points and y; € {—1,1} is the class label of the data point
x;. The coefficients «; are the solution of a quadratic programming problem. The margin
M is the distance of the support vectors to the hyperplane, it is given by:
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The margin is an indicator of the separability of the data. In fact, the expected error proba-
bility of the SVM, EP,,.., satisfies the following bound [15]:
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where D is the diameter of the smallest sphere containing all data points in the training set.



3.2 Learning Components

Our method automatically determines rectangular components from a set of object images.
The algorithm starts with a small rectangular component located around a pre-selected
point in the object image (e.g. for faces this could be the center of the left eye). The com-
ponent is extracted from each object image to build a training set of positive examples. We
also generate a training set of background patterns that have the same rectangular shape as
the component. After training an SVM on the component data we estimate the performance
of the SVM based on the upper bound on the error probability. According to Eq. (3) we
calculate:
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As shown in [15] this quantity can be computed by solving a quadratic programming prob-
lem. After determining p we enlarge the component by expanding the rectangle by one
pixel into one of the four directions (up, down, left, right). Again, we generate training
data, train an SVM and determine p. We do this for expansions into all four directions
and finally keep the expansion which decreases p the most. This process is continued until
the expansions into all four directions lead to an increase of p. In order to learn a set of
components this process can be applied to different seed regions.

4 Learning Facial Components

Extracting face patterns is usually a tedious and time-consuming work that has to be done
manually. Taking the component-based approach we would have to manually extract each
single component from all images in the training set. This procedure would only be feasible
for a small number of components. For this reason we used textured 3-D head models [16]
to generate the training data. By rendering the 3-D head models we could automatically
generate large numbers of faces in arbitrary poses and with arbitrary illumination. In ad-
dition to the 3-D information we also knew the 3-D correspondences for a set of reference
points shown in Fig. 1a). These correspondences allowed us to automatically extract facial
components located around the reference points. Originally we had seven textured head
models acquired by a 3-D scanner. Additional head models were generated by 3-D morph-
ing between all pairs of the original head models. The heads were rotated between —30°
and 30° in depth. The faces were illuminated by ambient light and a single directional light
pointing towards the center of the face. The position of the light varied between —30° and
30° in azimuth and between 30° and 60° in elevation. Overall, we generated 2,457 face
images of size 58 x58. Some examples of synthetic face images used for training are shown
in Fig. 1b).

The negative training set initially consisted of 10,209 58x58 non-face patterns randomly
extracted from 502 non-face images. We then applied bootstrapping to enlarge the training
data by non-face patterns that look similar to faces. To do so we trained a single linear
SVM classifier and applied it to the previously used set of 502 non-face images. The false
positives (FPs) were added to the non-face training data to build the final training set of
size 13,654.

We started with fourteen manually selected seed regions of size 5x5. The resulting com-
ponents were located around the eyes (17 x 17 pixels), the nose (15x 20 pixels), the mouth
(31x15 pixels), the cheeks (21x 20 pixels), the lip (13x 16 pixels), the nostrils (22 x 12
pixels), the corners of the mouth (18x 11 pixels), the eyebrows (19x15 pixels), and the
bridge of the nose (18 x16 pixels).



a)
Figure 1: a) Reference points on the head models which were used for 3-D morphing and
automatic extraction of facial components. b) Examples of synthetic faces.

5 Combining Components

An overview of our two-level component-based classifier is shown in Fig. 2. On the first
level the component classifiers independently detect components of the face. Each classi-
fier was trained on a set of facial components and on a set of non-face patterns generated
from the training set described in Section 4. On the second level the combination classi-
fier performs the detection of the face based on the outputs of the component classifiers.
The maximum real-valued outputs of each component classifier within rectangular search
regions around the expected positions of the components are used as inputs to the combina-
tion classifier. The size of the search regions was estimated from the mean and the standard
deviation of the locations of the components in the training images. The maximum op-
eration is performed both during training and at run-time. Interestingly it turns out to be
similar to the key pooling mechanism postulated in a recent model of object recognition in
the visual cortex [8]. We also provide the combination classifier with the precise positions
of the detected components relative to the upper left corner of the 58 x 58 window. Overall
we have three values per component classifier that are propagated to the combination clas-
sifier: the maximum output of the component classifier and the z-y image coordinates of
the maximum.
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Figure 2: System overview of the component-based classifier.



6 Experiments

In our experiments we compared the component-based system to global classifiers. The
component system consisted of fourteen linear SVM classifiers for detecting the compo-
nents and a single linear SVM as combination classifier. The global classifiers were a single
linear SVM and a single second-degree polynomial SVM both trained on the gray values
of the whole face pattern. The training data for these three classifiers consisted of 2,457
synthetic gray face images and 13,654 non-face gray images of size 58x58. The positive
test set consisted of 1,834 faces rotated between about —30° and 30° in depth. The faces
were manually extracted from the CMU PIE database [12]. The negative test set consisted
of 24,464 difficult non-face patterns that were collected by a fast face detector [3] from
web images. The FP rate was calculated relative to the number of non-face test images.
Because of the resolution required by the component-based system, a direct comparison
with other published systems on the standard MIT-CMU test set [10] was impossible. For
an indirect comparison, we used a second-degree polynomial SVM [2] which was trained
on a large set of 19x19 real face images. This classifier performed amongst the best face
detection systems on the MIT-CMU test set. The ROC curves in Fig. 3 show that the
component-based classifier is significantly better than the three global classifiers. Some
detection results generated by the component system are shown in Fig. 4.

Components vs. Whole Face
Training (58x58): 2,457 synthetic faces , 13,654 non-faces
Training (19x19): 10,038 faces , 36,220 non-faces
Test: Subset of CMU PIE, 1,834 faces, 24,464 non-faces
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Figure 3: Comparison between global classifiers and the component-based classifier.

Figure 4: Faces detected by the component-based classifier.



A natural question that arises is about the role of geometrical information. To answer this
question—which has relevant implications for models of cortex—we tested another system in
which the combination classifier receives as inputs only the output of each component clas-
sifier but not the position of its maximum. As shown in Fig. 5 this system still outperforms
the whole face systems but it is worse than the system with position information.

Position Information vs. No Postion Information
Training (58x58): 2,457 synthetic faces , 13,654 non-faces
Test: Subset of CMU PIE, 1,834 faces, 24,464 non-faces
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Figure 5: Comparison between a component-based classifier trained with position infor-
mation and a component-based classifier without position information.

7 Open Questions

An extension under way of the component-based approach to face identification is already
showing good performances [1]. Another natural generalization of the work described here
involves the application of our system to various classes of objects such as cars, animals,
and people. Still another extension regards the question of view-invariant object detec-
tion. As suggested by [7] in a biological context and demonstrated recently by [11] in
machine vision, full pose invariance in recognition tasks can be achieved by combining
view-dependent classifiers. It is interesting to ask whether the approach described here
could also be used to learn which views are most discriminative and how to combine them
optimally. Finally, the role of geometry and in particular how to compute and represent
position information in biologically plausible networks, is an important open question at
the interface between machine and biological vision.
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