
Robust Reinforcement Learning

J un Morimoto
Graduate School of Information Science

N ara Institute of Science and Technology;
Kawato Dynamic Brain Project, JST
2-2 Hikaridai Seika-cho Soraku-gun

Kyoto 619-0288 JAPAN
xmorimo@erato.atr.co.jp

Kenji Doya
ATR International;

CREST, JST
2-2 Hikaridai Seika-cho Soraku-gun

Kyoto 619-0288 JAPAN
doya@isd.atr.co.jp

Abstract

This paper proposes a new reinforcement learning (RL) paradigm
that explicitly takes into account input disturbance as well as mod­
eling errors. The use of environmental models in RL is quite pop­
ular for both off-line learning by simulations and for on-line ac­
tion planning. However, the difference between the model and the
real environment can lead to unpredictable, often unwanted results.
Based on the theory of H oocontrol, we consider a differential game
in which a 'disturbing' agent (disturber) tries to make the worst
possible disturbance while a 'control' agent (actor) tries to make
the best control input. The problem is formulated as finding a min­
max solution of a value function that takes into account the norm
of the output deviation and the norm of the disturbance. We derive
on-line learning algorithms for estimating the value function and
for calculating the worst disturbance and the best control in refer­
ence to the value function. We tested the paradigm, which we call
"Robust Reinforcement Learning (RRL)," in the task of inverted
pendulum. In the linear domain, the policy and the value func­
tion learned by the on-line algorithms coincided with those derived
analytically by the linear H ootheory. For a fully nonlinear swing­
up task, the control by RRL achieved robust performance against
changes in the pendulum weight and friction while a standard RL
control could not deal with such environmental changes.

1 Introduction

In this study, we propose a new reinforcement learning paradigm that we call
"Robust Reinforcement Learning (RRL)." Plain, model-free reinforcement learning
(RL) is desperately slow to be applied to on-line learning of real-world problems.
Thus the use of environmental models have been quite common both for on-line ac­
tion planning [3] and for off-line learning by simulation [4]. However, no model can

be perfect and modeling errors can cause unpredictable results, sometimes worse
than with no model at all. In fact , robustness against model uncertainty has been
the main subject of research in control community for the last twenty years and the
result is formalized as the "'Hoo" control theory [6).

In general, a modeling error causes a deviation of the real system state from the
state predicted by the model. This can be re-interpreted as a disturbance to the
model. However, the problem is that the disturbance due to a modeling error
can have a strong correlation and thus standard Gaussian assumption may not
be valid. The basic strategy to achieve robustness is to keep the sensitivity I of
the feedback control loop against a disturbance input small enough so that any
disturbance due to the modeling error can be suppressed if the gain of mapping
from the state error to the disturbance is bounded by 1;'. In the 'Hooparadigm,
those 'disturbance-to-error' and 'error-to-disturbance' gains are measured by a max
norms of the functional mappings in order to assure stability for any modes of
disturbance.

In the following, we briefly introduce the 'Hoo paradigm and show that design of a
robust controller can be achieved by finding a min-max solution of a value nmc­
tion, which is formulated as Hamilton-Jacobi-Isaacs (HJI) equation. We then derive
on-line algorithms for estimating the value functions and for simultaneously deriv­
ing the worst disturbance and the best control that, respectively, maximizes and
minimizes the value function.

We test the validity of the algorithms first in a linear inverted pendulum task. It
is verified that the value function as well as the disturbance and control policies
derived by the on-line algorithm coincides with the solution of Riccati equations
given by 'Hootheory. We then compare the performance of the robust RL algorithm
with a standard model-based RL in a nonlinear task of pendulum swing-up [3). It
is shown that robust RL controller can accommodate changes in the weight and the
friction of the pendulum, which a standard RL controller cannot cope with.

2 H 00 Control

W(s)--..-j

u(s)

(a)

z(s)

W~G z

u y
K

(b)

Figure 1: (a) Generalized Plant and Controller, (b) Small Gain Theorem

The standard 'Hoocontrol [6) deals with a system shown in Fig.l(a), where G is the
plant, K is the controller, u is the control input, y is the measurement available to
the controller (in the following, we assume all the states are observable, i.e. y = x),
w is unknown disturbance, and z is the error output that is desired to be kept small.
In general, the controller K is designed to stabilize the closed loop system based on
a model of the plant G. However, when there is a discrepancy between the model
and the actual plant dynamics, the feedback loop could be unstable. The effect of
modeling error can be equivalently represented as a disturbance w generated by an

unknown mapping ~ of the plant output z, as shown in Fig.1(b).

The goal of 1(,,,control problem is to design a controller K that brings the error z
to zero while minimizing the Hoonorm of the closed loop transfer function from the
disturbance w to the output z

(1)

Here II • 112 denotes £2 norm and i7 denotes maximum singular value. The small
gain theorem assures that if IITzwiloo ~ 'Y, then the system shown in Fig. l(b) will
be stable for any stable mapping ~ : z f-t w with 11~1100 < ~.

2.1 Min-max Solution to HooProblem

We consider a dynamical system x = f(x, u, w) . Hoocontrol problem is equivalent
to finding a control output u that satisfies a constraint

(2)

against all possible disturbance w with x(O) = 0, because it implies

(3)

We can consider this problem as differential game[5] in which the best control output
u that minimizes V is sought while the worst disturbance w that maximizes V is
chosen. Thus an optimal value function V* is defined as

V* = minmax (00 (zT(t)z(t) _ 'Y2wT(t)w(t))dt.
u w 10

The condition for the optimal value function is given by

oV*
0= minmax[zT z - 'Y2WTW + ~ f(x, u, w)]

u w uX

(4)

(5)

which is known as Hamilton-Jacobi-Isaacs (HJI) equation. From (5), we can derive
the optimal control output u op and the worst disturbance wop by solving

OZT Z oV of (x, u , w) _ 0 d
OU + ox OU - an

OZT Z _ 2 T oV of (x, u, w) _ 0
oW 'YW + ox ow -. (6)

3 Robust Reinforcement Learning

Here we consider a continuous-time formulation of reinforcement learning [3]
with the system dynamics x = f(x, u) and the reward r(x, u). The basic
goal is to find a policy u = g(x) that maximizes the cumulative future reward
!too e-·~t r(x(s), u(s))ds for any given state x(t), where T is a time constant of
evaluation. However, a particular policy that was optimized for a certain envi­
ronment may perform badly when the environmental setting changes. In order to

assure robust performance under changing environment or unknown disturbance,
we introduce the notion of worst disturbance in 1i<x> control to the reinforcement
learning paradigm.

In this framework, we consider an augmented reward

q(t) = r(x(t), u(t)) + s(w(t)), (7)

where s(w(t)) is an additional reward for withstanding a disturbing input, for ex­
ample, s(w) = 'Y2wT w. The augmented value function is then defined as

V(x(t)) = 1 <X> e- ' -;' q(x(s), u(s), w(s))ds. (8)

The optimal value function is given by the solution of a variant of HJI equation

1 aV*
- V*(x) = maxmin[r(x , u) + s(w) + ~ f(x, u, w)].
T U W ux

(9)

Note that we can not find appropriate policies (Le. the solutions of the HJI equation)
if we choose too small 'Y. In the robust reinforcement learning (RRL) paradigm,
the value function is update by using the temporal difference (TD) error [3]
8(t) = q(t) - ~ V(t) + V(t), while the best action and the worst disturbance are
generated by maximizing and minimizing, respectively, the right hand side of HJI
equation (9). We use a function approximator to implement the value function
V(x(t); v), where y is a parameter vector. As in the standard continuous-time RL,
we define eligibility trace for a parameter Vi as ei(s) = J; e- ' ;;' 8~jit)dt and up-

date rule as ei(t) = -~ei(t) + 8~v~t) , where", is the time constant of the eligibility
trace[3] . We can then derive learning rule for value function approximator [3] as
Vi = rJ8(t)ei(t), where rJ denotes the learning rate. Note that we do not assume
f(x = 0) = 0 because the error output z is generalized as the reward r(x , u) in
RRL framework.

3.1 Actor-disturber-critic

We propose actor-disturber-critic architecture by which we can implement robust
RL in a model-free fashion as the actor-critic architecture[l]. We define the policies
of the actor and the disturber implemented as u(t) = Au(x(t); yU) + nu(t) and
w(t) = Aw(x(t); y W) +nw(t), respectively, where Au(x(t); y U) and Aw(x(t); yW) are
function approximators with parameter vectors, yU and yW, and nu(t) and nw(t)
are noise terms for exploration. The parameters of the actor and the disturber are
updated by

vr = rJu8(t)nu(t) aAu(;~~; yU)

t

(10)

where rJu and rJw denote the learning rates.

3.2 Robust Policy by Value Gradient

Now we assume that an input-Affine model of the system dynamics and quadratic
models of the costs for the inputs are available as

x f(x) + gl(X)W + g2(X)U

r(x , u) = Q(x) - uTR(x)u, s(w) = 'Y2wT w.

In this case, we can derive the best action and the worst disturbance in reference
to the value function V as

1 -1 T 8V T
u op = "2 R(X) g2 (X)(Ox) (11)

We can use the policy (11) using the value gradient ~~ derived from the value
function approximator.

3.3 Linear Quadratic Case

Here we consider a case in which a linear dynamic model and quadratic reward
models are available as

x = Ax+B1w+B2u

r(x, u)

In this case, the value function is given by a quadratic form V = _xT Px, where P
is the solution of a Riccati equation

TIT -1 T 1
A P+ PA+ P('iB1B1 - B2R B2)P+ Q = -Po

, T
(12)

Thus we can derive the best action and the worst disturbance as

(13)

4 Simulation

We tested the robust RL algorithm in a task of swinging up a pendulum. The
dynamics of the pendulum is given by ml2jj = -p,e + mgl sin /9 + T, where /9 is the
angle from the upright position , T is input torque, p, = 0.01 is the coefficient of
friction, m = 1.0[kg] is the weight of the pendulum, l = 1.0[m] is the length of
the pendulum, and g = 9.8[m/s2] is the gravity acceleration. The state vector is
defined as x = (/9,e)T.

4.1 Linear Case

We first considered a linear problem in order to test if the value function and
the policy learned by robust RL coincides with the analytic solution of 1icx:>control
problem. Thus we use a locally linearized dynamics near the unstable equilibrium
point x = (0, O)T . The matrices for the linear model are given by

A= (~ ~~),B1 = (~,),B2 = (~,),Q= (~ ~),R=1. (14)

The reward function is given by q(t) = _xT Qx - u2 + ,2W2, where robustness
criteria, = 2.0.

The value function, V = _xT Px, is parameterized by a symmetric matrix P. For
on-line estimation of P, we define vectors x = (xi, 2X1X2, XDT, p = (Pll,P12,P22)T
and reformulate V as V = _pTx. Each element of p is updated using recursive
least squares method[2]. Note that we used pre-designed stabilizing controller as
the initial setting of RRL controller for stable learning[2].

4.1.1 Learning of the value function
Here we used the policy by value gradient shown in section 3.2. Figure 2(a) shows
that each element of the vector p converged to the solution of the Ricatti equation
(12).

4.1.2 Actor-disturber-critic

Here we used robust RL implemented by the actor-disturber-critic shown in section
3.1. In the linear case, the actor and the disturber are represented as the linear
controllers, A,,(x; v") = v"x and Aw(x; VW) = vWx, respectively. The actor and
the disturber were almost converged to the policy in (13) which derived from the
Ricatti equation (12) (Fig. 2(b)).

100

80
P"

.-----------------~- --""'"~

lOf . :~------------------::----
,

-5

v,

P22 -25 __ • •• __ • _________ •• _ •• ___ ~~ ___ _

~~~e::::;;=:;';::~250~300 -3°0 50 100 150 200 250 300 
Trials 

(a) Elements of p (b) Elements of v 

Figure 2: Time course of (a)elements of vector p = (Pll,P12,P22) and (b) elements 
of gain vector of the actor v" = (vf, v~) and the disturber VW = (vi", v2"). The 
dash-dotted lines show the solution of the Ricatti equation. 

4.2 Applying Robust RL to a Non-linear Dynamics 
We consider non-linear dynamical system (11), where 

f(x) = ( ~ sine _ ~e ) ,gt{x) = ( ~ ) ,g2(X) = ( ~ ) 
Q(x) = cos(e) - 1, R(x) = 0.04. (15) 

From considering (7) and (15), the reward function is given by q(t) = cos(e) - 1 -
0.04u2 + "'·?w2 , where robustness criteria 'Y = 0.22. For approximating the value 
function, we used Normalized Gaussian Network (NGnet)[3]. Note that the input 
gain g(x) was also learned[3]. 

Fig.3 shows the value functions acquired by robust RL and standard model-based 
RL[3]. The value function acquired by robust RL has a shaper ridge (Fig.3(a)) 
attracts swing up trajectories than that learned with standard RL. 

In FigA, we compared the robustness between the robust RL and the standard RL. 
Both robust RL controller and the standard RL controller learned to swing up and 
hold a pendulum with the weight m = 1.0[m] and the coefficient of friction J-t = 0.01 
(FigA(a)) . 

The robust RL controller could successfully swing up pendulums with different 
weight m = 3.0[kg] and the coefficient of friction J-t = 0.3 (FigA(b)). This result 
showed robustness of the robust RL controller. The standard RL controller could 
achieve the task in fewer swings for m = 1.0[kg] and J-t = 0.01 (FigA(a)). However, 
the standard RL controller could not swing up the pendulum with different weight 
and friction (FigA(b)). 



v 

1
" ·00' 

- 1.00 1 

- 2.001 

th th 

(a) Robust RL (b) Standard RL 

Figure 3: Shape of the value function after 1000 learning trials with m = 1. 0 [kg] , 
l = 1.0[m], and J1, = 0.01. 

2 - -------------r'--------1 

.. 
1 1 

OS 

Ir_'-"-"R~obu~"' -' ::~~ ... -------------­

~~~-~--~S~m"~d'~~~~3~~~~~ 
Time [sec)

(a) m = 1.0, J.I, = 0.01

(\
\! \
.~. '.

o ------ ------- -'-------I

(b) m = 3.0,J.I, = 0.3

Figure 4: Swing up trajectories with pendulum with different weight and friction.
The dash-dotted lines show upright position.

5 Conclusions
In this study, we proposed new RL paradigm called "Robust Reinforcement Learn­
ing (RRL)." We showed that RRL can learn analytic solution of the 1-loo controller
in the linearized inverted pendulum dynamics and also showed that RRL can deal
with modeling error which standard RL can not deal with in the non-linear inverted
pendulum swing-up simulation example. We will apply RRL to more complex task
like learning stand-up behavior[4].

References

[1] A. G . Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Transactions on Systems, Man,
and Cybernetics, 13:834- 846, 1983.

[2] S. J. Bradtke. Reinforcement learning Applied to Linear Quadratic Regulation. In
S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information
Processing Systems 5, pages 295- 302. Morgan Kaufmann, San Mateo, CA, 1993.

[3] K. Doya. Reinforcement Learning in Continuous Time and Space. Neural Computation,
12(1):219-245, 2000.

[4] J . Morimoto and K. Doya. Acquisition of stand-up behavior by a real robot using hier­
archical reinforcement learning. In Proceedings of Seventeenth International Conference
on Machine Learning, pages 623- 630, San Francisco, CA, 2000. Morgan Kaufmann.

[5] S. Weiland. Linear Quadratic Games, Hco , and the Riccati Equation. In Proceedings of
the Workshop on the Riccati Equation in Control, Systems, and Signals, pages 156- 159.
1989.

[6] K. Zhou, J . C. Doyle, and K. Glover. Robust Optimal Control. PRENTICE HALL,
New J ersey, 1996.

