
Balancing Multiple Sources of Reward in
Reinforcement Learning

Christian R. Shelton
Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA 02139

cshelton@ai.mit.edu

Abstract

For many problems which would be natural for reinforcement learning,
the reward signal is not a single scalar value but has multiple scalar com­
ponents. Examples of such problems include agents with multiple goals
and agents with multiple users. Creating a single reward value by com­
bining the multiple components can throwaway vital information and
can lead to incorrect solutions. We describe the multiple reward source
problem and discuss the problems with applying traditional reinforce­
ment learning. We then present an new algorithm for finding a solution
and results on simulated environments.

1 Introduction

In the traditional reinforcement learning framework, the learning agent is given a single
scalar value of reward at each time step. The goal is for the agent to optimize the sum
of these rewards over time (the return). For many applications, there is more information
available.

Consider the case of a home entertainment system designed to sense which residents are
currently in the room and automatically select a television program to suit their tastes. We
might construct the reward signal to be the total number of people paying attention to the
system. However, a reward signal of 2 ignores important information about which two
users are watching. The users of the system change as people leave and enter the room. We
could, in theory, learn the relationship among the users present, who is watching, and the
reward. In general, it is better to use the domain knowledge we have instead of requiring
the system to learn it. We know which users are contributing to the reward and that only
present users can contribute.

In other cases, the multiple sources aren't users, but goals. For elevator scheduling we
might be trading off people serviced per minute against average waiting time. For financial
portfolio managing, we might be weighing profit against risk. In these cases, we may wish
to change the weighting over time. In order to keep from having to relearn the solution
from scratch each time the weighting is changed, we need to keep track of which rewards
to attribute to which goals.

There is a separate difficulty if the rewards are not designed functions of the state but

rather are given by other agents or people in the environment. Consider the case of the
entertainment system above but where every resident has a dial by which they can give the
system feedback or reward. The rewards are incomparable. One user may decide to reward
the system with values twice as large as those of another which should not result in that
user having twice the control over the entertainment. This isn't limited to scalings but also
includes any other monotonic transforms of the returns. If the users of the system know
they are training it, they will employ all kinds of reward strategies to try to steer the system
to the desired behavior [2]. By keeping track of the sources of the rewards, we will derive
an algorithm to overcome these difficulties.

1.1 Related Work

The work presented here is related to recent work on multiagent reinforcement learning
[1,4,5,7] in that multiple rewards signals are present and game theory provides a solution.
This work is different in that it attacking a simpler problem where the computation is con­
solidated on a single agent. Work in multiple goals (see [3, 8] as examples) is also related
but assumes either that the returns of the goals are to be linearly combined for an overall
value function or that only one goal is to be solved at a time.

1.2 Problem Setup

We will be working with partially observable environments with discrete actions and dis­
crete observations. We make no assumptions about the world model and thus do not use
belief states. x(t) and a(t) are the observation and action, respectively, at time t. We
consider only reactive policies (although the observations could be expanded to include
history). 7f(x, a) is the policy or probability the agent will take action a when observing x.
At each time step, the agent receives a set of rewards (one for each source in the environ­
ment), Ts (t) is the reward at time t from source s. We use the average reward formulation
and so R; = limn--->CXl ~E [r·s(1) + Ts(2) + ... + Ts(n)I7f] is the expected return from
source s for following policy 7f. It is this return that we want to maximize for each source.

We will also assume that the algorithm knows the set of sources present at each time step.
Sources which are not present provide a constant reward, regardless of the state or action,
which we will assume to be zero. All sums over sources will be assumed to be taken over
only the present sources.

The goal is to produce an algorithm that will produce a policy based on previous experience
and the sources present. The agent's experience will take the form of prior interactions with
the world. Each experience is a sequence of observations, action, and reward triplets for a
particular run of a particular policy.

2 Balancing Multiple Rewards

2.1 Policy Votes

If rewards are not directly comparable, we need to find a property of the sources which is
comparable and a metric to optimize. We begin by noting that we want to limit the amount
of control any given source has over the behavior of the agent. To that end, we construct
the policy as the average of a set of votes, one for each source present. The votes for a
source must sum to 1 and must all be non-negative (thus giving each source an equal "say"
in the agent's policy). We will first consider restricting the rewards from a given source to
only affect the votes for that source.

The form for the policy is therefore

(1)

where for each present source 8, L x a s(x) = 1, as (x) ~ ° for all x , L a vs (x, a) = 1
for all x , and Vs (x, a) ~ ° for all x and a. We have broken apart the vote from a source
into two parts, a and v . as (x) is how much effort source 8 is putting into affecting the
policy for observation x . vs (x, a) is the vote by source 8 for the policy for observation x.
Mathematically this is the same as constructing a single vote (v~(x, a) = as (x)vs (x, a) ,
but we find a and v to be more interpretable.

We have constrained the total effort and vote anyone source can apply. Unfortunately,
these votes are not quite the correct parameters for our policy. They are not invariant to
the other sources present. To illustrate this consider the example of a single state with two
actions, two sources, and a learning agent with the voting method from above. If 8 1 prefers
only a1 and 82 likes an equal mix of a1 and a2, the agent will learn a vote of (1,0) for 81

and 82 can reward the agent to cause it to learn a vote of (0,1) for 82 resulting in a policy
of (0.5,0.5). Whether this is the correct final policy depends on the problem definition.
However, the real problem arises when we consider what happens if 8 1 is removed. The
policy reverts to (0 , 1) which is far from 82 'S (the only present source's) desired (0.5 , 0.5)
Clearly, the learned votes for 82 are meaningless when 8 1 is not present.

Thus, while the voting scheme does limit the control each present source has over the
agent, it does not provide a description of the source's preferences which would allow for
the removal or addition (or reweighting) of sources.

2.2 Returns as Preferences

While rewards (or returns) are not comparable across sources, they are comparable within
a source. In particular, we know that if R;l > R;2 that source 8 prefers policy 'if1 to policy
'if2 . We do not know how to weigh that preference against a different source's preference
so an explicit tradeoff is still impossible, but we can limit (using the voting scheme of
equation 1) how much one source's preference can override another source's preference.

We allow a source's preference for a change to prevail in as much as its votes are sufficient
to affect the change in the presences of the other sources' votes. We have a type of a
general-sum game (letting the sources be the players of game theory jargon). The value to
source 8 ' of the set of all sources' votes is R;, where 'if is the function of the votes defined
in equation 1. Each source 8 ' would like to set its particular votes, as, (x) and v~ (x, a) to
maximize its value (or return). Our algorithm will set each source's vote in this way thus
insuring that no source could do better by "lying" about its true reward function.

In game theory, a "solution" to such a game is called a Nash Equilibrium [6], a point at
which each player (source) is playing (voting) its best response to the other players. At a
Nash Equilibrium, no single player can change its play and achieve a gain. Because the
votes are real-valued, we are looking for the equilibrium of a continuous game. We will
derive a fictitious play algorithm to find an equilibrium for this game.

3 Multiple Reward Source Algorithm

3.1 Return Parameterization

In order to apply the ideas of the previous section, we must find a method for finding a
Nash Equilibrium. To do that, we will pick a parametric form for R; (the estimate of the

return): linear in the KL-divergence between a target vote and 1L Letting as. bs, f3s (x), and
Ps(x, a) be the parameters of Ii; ,

An """' () """' () Ps(X, a) Rs =as ~f3sx ~psx, alog () + bs
x a n x, a

(2)

where as ::::: 0, f3s (x) ::::: 0, L:x f3s (x) = 1, Ps(x, a) ::::: 0, and L:aps(x , a) = 1. Just as
a s (x) was the amount of vote source s was putting towards the policy for observation x,
f3s (x) is the importance for source s of the policy for observation x . And, while Vs (x, a)
was the policy vote for observation x for source s, ps(x, a) is the preferred policy for
observation x for source s. The constants as and bs allow for scaling and translation of the
return.

If we let p~(x , a) = asf3s (x)ps(x, a), then, given experiences of different policies and
their empirical returns, we can estimate p~(x, a) using linear least-squares. Imposing the
constraints just involves finding the normal least-squares fit with the constraint that all
p~(x, a) be non-negative. Fromp~(x, a) we can calculate as = L: x,ap~(x, a), f3s (x) =

.1... L:ap~(x, a) and Ps(x, a) = ~p~ (~t) ')' We now have a method for solving for Ii;
as a' Ps x,a
given experience. We now need to find a way to compute the agent's policy.

3.2 Best Response Algorithm

To produce an algorithm for finding a Nash Equilibrium, let us first start by deriving an
algorithm for finding the best response for source s to a set of votes. We need to find the
set of as (x) and Vs (x, a) that satisfy the constraints on the votes and maximize equation 2
which is the same as minimizing

,,"", f-! ()"""' ()1 . L:slas/ (x)vs/ (X)
~fJs X ~ps x , a og '" ()

L..J s' Qs, X x a

(3)

over a s (x) and v s (x , a) for given s because the other terms depend on neither as (x) nor
vs(x , a).

To minimize equation 3, let's first fix the a -values and optimize Vs (x, a). We will ignore the
non-negative constraints on Vs (x , a) and just impose the constraint that L:a Vs (x , a) = 1.
The solution, whose derivation is simple and omitted due to space, is

(4)

We impose the non-negative constraints by setting to zero any Vs (x, a) which are negative
and renormalizing.

Unfortunately, we have not been able to find such a nice solution for a s(x). Instead, we
use gradient descent to optimize equation 3 yielding

(5)

We constrain the gradient to fit the constraints.

We can find the best response for source s by iterating between the two steps above. First
we initialize a s(x) = f3s (x) for all x. We then solve for a new set of vs(x, a) with equa­
tion 4. Using those v-values, we take a step in the direction of the gradient of a s(x) with
equation 5. We keep repeating until the solution converges (reducing the step size each
iteration) which usually only takes a few tens of steps.

«K~
J

T
,:[• Bright ' , ' ,

Sbottom

,:~ T => ':~,., =>
::b

, , ' ,

8 1eft

,~ T ,:L • " , " ,

ps(5,a) vs(5 , a) 7f(5 ,a)

Figure 1: Load-unload problem: The right is the state diagram, Cargo is loaded in state L
Delivery to a boxed state results in reward from the source associated with that state, The
left is the solution found, For state 5, from left to right are shown the p-values, the v-values,
and the policy,

J
=> 'J,., => Bright

'[':' , • Sbottom J~,~,
ps(5 ,a) vs(5,a) 7f(5, a)

Figure 2: Transfer of the load-unload solution: plots of the same values as in figure 1 but
with the left source absent No additional learning was allowed (the left side plots are the
same), The votes, however, change, and thus so does the final policy,

3.3 Nash Equilibrium Algorithm

To find a Nash Equilibrium, we start with as (x) = f3s (x) and vs(x , a) = Ps(x, a) and
iterate to an equilibrium by repeatedly finding the best response for each source and simul­
taneously replacing the old solution with the new best responses, To prevent oscillation,
whenever the change in as (x)vs (x , a) grows from one step to the next, we replace the old
solution with one halfway between the old and new solutions and continue the iteration,

4 Example Results

In all of these examples we used the same learning scheme. We ran the algorithm for a
series of epochs. At each epoch, we calculated 7f using the Nash Equilibrium algorithm.
With probability t, we replace 7f with one chosen uniformly over the simplex of conditional
distributions . This insures some exploration. We follow 7f for a fixed number of time steps
and record the average reward for each source. We add these average rewards and the
empirical estimate of the policy followed as data to the least-squares estimate of the returns.
We then repeat for the next epoch.

4.1 Multiple Delivery Load-Unload Problem

We extend the classic load-unload problem to multiple receivers. The observation state
is shown in figure 1. The hidden state is whether the agent is currently carrying cargo.
Whenever the agent enters the top state (state 1), cargo is placed on the agent Whenever
the agent arrives in any of the boxed states while carrying cargo, the cargo is removed
and the agent receives reward. For each boxed state, there is one reward source who only
rewards for deliveries to that state (a reward of 1 for a delivery and 0 for all other time
steps). In state 5, the agent has the choice of four actions each of which moves the agent
to the corresponding state without error. Since the agent cannot observe neither whether it

Figure 3: One-way door state diagram: At every state there are two actions (right and left)
available to the agent. In states 1,9, 10, and 15 where there are only single outgoing edges,
both actions follow the same edge. With probability 0.1, an action will actually follow the
other edge. Source 1 rewards entering state 1 whereas source 2 rewards entering state 9.

81 :~I .•...... ~
82

:1 ~ :~I ~~ .. ~
(3s (x)

=}
(ts(x)

=}

81

82

Ps(x, right) Vs (x , right) n(x, right)

Figure 4: One-way door solution: from left to right: the sources' ideal policies, the votes,
and the final agent's policy. Light bars are for states for which both actions lead to the same
state.

has cargo nor its history, the optimal policy for state 5 is stochastic.

The algorithm set all (t- and {3-values to 0 for states other than state 5. We started f at 0.5
and reduced it to 0.1 by the end of the run. We ran for 300 epochs of 200 iterations by
which point the algorithm consistently settled on the solution shown in figure 1. For each
source, the algorithm found the best solution of randomly picking between the load state
and the source's delivery state (as shown by the p-values). The votes are heavily weighted
towards the delivery actions to overcome the other sources' preferences resulting in an
approximately uniform policy. The important point is that, without additional learning, the
policy can be changed if the left source leaves. The learned (t- and p-values are kept the
same, but the Nash Equilibrium is different resulting in the policy in figure 2.

4.2 One-way Door Problem

In this case we consider the environment shown in figure 3. From each state the agent can
move to the left or right except in states 1, 9, 10, and 15 where there is only one possible
action. We can think of states 1 and 9 as one-way doors. Once the agent enters states 1
or 9, it may not pass back through except by going around through state 5. Source 1 gives
reward when the agent passes through state 1. Source 2 gives reward when the agent passes
through state 9. Actions fail (move in the opposite direction than intended) 0.1 of the time.

We ran the learning scheme for 1000 epochs of 100 iterations starting f at 0.5 and reducing
it to 0.015 by the last epoch. The algorithm consistently converged to the solution shown
in figure 4. Source 1 considers the left-side states (2-5 and 11-12) the most important
while source 2 considers the right-side states (5-8 and 13-14) the most important. The
ideal policies captured by the p-values show that source 1 wants the agent to move left
and source 2 wants the agent to move right for the upper states (2-8) while the sources

agree that for the lower states (11-14) the agent should move towards state 5. The votes
reflect this preference and agreement. Both sources spend most of their vote on state 5,
the state they both feel is important and on which they disagree. The other states (states
for which only one source has a strong opinion or on which they agree), they do not need
to spend much of their vote. The resulting policy is the natural one: in state 5, the agent
randomly picks a direction after which, the agent moves around the chosen loop quickly to
return to state 5. Just as in the load-unload problem, if we remove one source, the agent
automatically adapts to the ideal policy for the remaining source (with only one source, So,
present, 7f(x, a) = P SQ (x, a)).

Estimating the optimal policies and then taking the mixture of these two policies would
produce a far worse result. For states 2-8, both sources would have differing opinions and
the mixture model would produce a uniform policy in those states; the agent would spend
most of its time near state 5. Constructing a reward signal that is the sum of the sources'
rewards does not lead to a good solution either. The agent will find that circling either the
left or right loop is optimal and will have no incentive to ever travel along the other loop.

5 Conclusions

It is difficult to conceive of a method for providing a single reward signal that would result
in the solution shown in figure 4 and still automatically change when one of the reward
sources was removed. The biggest improvement in the algorithm will come from changing
the form of the Ii; estimator. For problems in which there is a single best solution, the
KL-divergence measure seems to work well. However, we would like to be able to extend
the load-unload result to the situation where the agent has a memory bit. In this case, the
returns as a function of 7f are bimodal (due to the symmetry in the interpretation of the bit).
In general, allowing each source's preference to be modelled in a more complex manner
could help extend these results .

Acknowledgments

We would like to thank Charles Isbell, Tommi Jaakkola, Leslie Kaelbling, Michael Kearns, Satinder
Singh, and Peter Stone for their discussions and comments.

This report describes research done within CBCL in the Department of Brain and Cognitive Sciences
and in the AI Lab at MIT. This research is sponsored by a grants from ONR contracts Nos. NOOOI4-
93-1-3085 & NOO014-95-1-0600, and NSF contracts Nos. IIS-9800032 & DMS-9872936. Additional
support was provided by: AT&T, Central Research Institute of Electric Power Industry, Eastman
Kodak Company, Daimler-Chrysler, Digital Equipment Corporation, Honda R&D Co. , Ltd., NEC
Fund, Nippon Telegraph & Telephone, and Siemens Corporate Research, Inc.

References
[1] 1. Hu and M. P. Wellman. Multiagent reinforcement learning: Theoretical framework and an

algorithm. In Froc. of the 15th International Con! on Machine Learning, pages 242- 250, 1998.
[2] C. L. Isbell, C. R. Shelton, M. Kearns, S. Singh, and P. Stone. A social reinforcement learning

agent. 2000. submitted to Autonomous Agents 2001.
[3] 1. Karlsson. Learning to Solve Multiple Goals. PhD thesis, University of Rochester, 1997.
[4] M. Kearns, Y. Mansouor, and S. Singh. Fast planning in stochastic games. In Proc. of the 16th

Conference on Uncertainty in Artificial Intelligence , 2000.
[5] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In Proc. of

the 11th International Conference on Machine Learning, pages 157-163, 1994.
[6] G. Owen. Game Theory. Academic Press, UK, 1995.
[7] S. Singh, M. Kearns, and Y. Mansour. Nash convergence of gradient dynamics in general-sum

games. In Proc. of the 16th Conference on Uncertainty in Artificial Intelligence, 2000.
[8] S. P. Singh. The efficient learning of multiple task sequences. In NIPS, volume 4, 1992.

