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Abstract 

In theory, the Winnow multiplicative update has certain advantages over 
the Perceptron additive update when there are many irrelevant attributes. 
Recently, there has been much effort on enhancing the Perceptron algo
rithm by using regularization, leading to a class of linear classification 
methods called support vector machines. Similarly, it is also possible to 
apply the regularization idea to the Winnow algorithm, which gives meth
ods we call regularized Winnows. We show that the resulting methods 
compare with the basic Winnows in a similar way that a support vector 
machine compares with the Perceptron. We investigate algorithmic is
sues and learning properties of the derived methods. Some experimental 
results will also be provided to illustrate different methods. 

1 Introduction 

In this paper, we consider the binary classification problem that is to determine a label 
y E {-1, 1} associated with an input vector x. A useful method for solving this problem is 
through linear discriminant functions, which consist of linear combinations of the compo
nents of the input variable. Specifically, we seek a weight vector W and a threshold () such 
that wT x < () if its label y = -1 and wT x 2: () if its label y = 1. Given a training set of 
labeled data ( Xl, yl ), . . . , (x n , yn ), a number of approaches to finding linear discriminant 
functions have been advanced over the years. In this paper, we are especially interested in 
the following two families of online algorithms: Perceptron [12] and Winnow [10]. These 
algorithms typically fix the threshold () and update the weight vector w by going through 
the training data repeatedly. They are mistake driven in the sense that the weight vector is 
updated only when the algorithm is not able to correctly classify an example. 

For the Perceptron algorithm, the update rule is additive: if the linear discriminant function 
misclassifies an input training vector xi with true label yi, then we update each component 
j of the weight vector was: Wj f- Wj + T]X~yi, where T] > 0 is a parameter called learning 
rate. The initial weight vector can be taken as W = O. 

For the (unnormalized) Winnow algorithm (with positive weight), the update rule is mul
tiplicative: if the linear discriminant function misclassifies an input training vector xi 

with true label yi, then we update each component j of the weight vector was: Wj f

Wj exp( T]X~yi), where T] > 0 is the learning rate parameter, and the initial weight vector 
can be taken as Wj = f-Lj > O. The Winnow algorithm belongs to a general family of algo-



rithms called exponentiated gradient descent with unnormalized weights (EGU) [9]. There 
can be several variants. One is called balanced Winnow, which is equivalent to an embed
ding of the input space into a higher dimensional space as: x = [x, -x]. This modification 
allows the positive weight Winnow algorithm for the augmented input x to have the effect 
of both positive and negative weights for the original input x. Another modification is to 
normalize the one-norm of the weight w so that 2:j Wj = W, leading to the normalized 
Winnow. 

Theoretical properties of multiplicative update algorithms have been extensively studied 
since the introduction of Winnow. For linearly separable binary-classification problems, 
both Perceptron and Winnow are able to find a weight that separate the in-class vectors from 
the out-of-class vectors in the training set within a finite number of steps. However, the 
number of mistakes (updates) before finding a separating hyperplane can be very different 
[10, 9]. This difference suggests that the two algorithms serve for different purposes. 

For linearly separable problems, Vapnik proposed a method that optimizes the Perceptron 
mistake bound which he calls "optimal hyperplane" (see [15]). The same method has also 
appeared in the statistical mechanical learning literature (see [1, 8, 11]), and is referred 
to as achieving optimal stability. For non-separable problems, a generalization of optimal 
hyperplane was proposed in [2] by introducing a "soft-margin" loss term. In this paper, we 
derive regularized Winnow methods by constructing "optimal hyperplanes" that minimize 
the Winnow mistake bound (rather than the Perceptron mistake bound as in an SVM). We 
then derive a "soft-margin" version of the algorithms for non-separable problems. 

For simplicity, we shall assume 0 = 0 in this paper. The restriction does not cause problems 
in practice since one can always append a constant feature to the input data x, which offset 
the effect of O. The formulation with 0 = 0 can be more amenable to theoretical analysis. 
For an SVM, a fixed threshold also allows a simple Perceptron like numerical algorithm as 
described in chapter 12 of [13], and in [7]. Although more complex, a non-fixed 0 does not 
introduce any fundamental difficulty. 

The paper is organized as follows. In Section 2, we review mistake bounds for Perceptron 
and Winnow. Based on the bounds, we show how regularized Winnow methods can be 
derived by mimicking the optimal stability method (and SVM) for Perceptron. We also 
discuss the relationship of the newly derived methods with related methods. In Section 3, 
we investigate learning aspects of the newly proposed methods in a context similar to some 
known SVM results. An example will be given in Section 4 to illustrate these methods. 

2 SVM and regularized Winnow 

2.1 From Perceptron to SVM 

We review the derivation of SVM from Perceptron, which serves as a reference for our 
derivation of regularized Winnow. Consider linearly separable problems and let W be 
a weight that separates the in-class vectors from the out-of-class vectors in the training 
set. It is well known that the Perceptron algorithm computes a weight that correctly 
classifies all training data after at most M updates (a proof can be found in [15]) where 
M = IIwll~ max; Ilxill~/(miI1i wT xi)2. The weight vector w* that minimizes the right 
hand side of the bound is called the optimal hyperplane in [15] or the optimal stability hy
perplane in [1, 8, 11]. This optimal hyperplane is the solution to the following quadratic 
programming problem: 
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For non-separable problems, we introduce a slack variable f.i for each data point (xi, yi) 
(i = 1, ... ,n), and compute a weight vector w. (C) that solves 

Where C > 0 is a given parameter [15]. It is known that when C --+ 00, f.i --+ 0 and w. (C) 
converges to the weight vector w. of the optimal hyperplane. We can write down the KKT 
condition for the above optimization problem, and let Qi be the Lagrangian multiplier for 
wT xiyi ~ 1 - f. i . After elimination of wand f., we obtain the following dual optimization 
problem of the dual variable Q (see [15], chapter 10 for details): 

m;-x 2: Qi - ~(2: Qixiyi)2 s.t. Qi E [0, CJ for i = 1, ... ,n. 
i i 

The weight w.(C) is given by w.(C) = I:i Qixiyi at the optimal solution. To solve this 
problem, one can use the following modification of the Perceptron update algorithm (see 
[7] and chapter 12 of [13]): at each data point (xi, yi), we fix all Qk with k f:. i, and update 
Qi to maximize the dual objective functional, which gives: 

Qi --+ max(min(C, Qi + 7](1 _ wT xiyi)), 0), 

where w = I:i Qixiyi. The learning rate 7] can be set as 7] = 1/ xiT xi which corresponds 
to the exact maximization of the dual objective functional. 

2.2 From Winnow to regularized Winnow 

Similar to Perceptron, if a problem is linearly separable with a positive weight w, then 
Winnow computes a solution that correctly classifies all training data after at most M up-

dates with M = 2W(I: j Wj In ::IIII~II:) max,; Ilxill~/P, where 0 < 6 ::; milli wT xiyi, 

W ~ Ilwlll and the learning rate is 7] = 6 /(W maXi Ilxi II~). The proof of this specific 
bound can be found in [16] which employed techniques in [5] (also see [10] for earlier 
results). Note that unlike the Perceptron mistake bound, the above bound is learning rate 
dependent. It also depends on the prior J.Lj > 0 which is the initial value of w in the basic 
Winnows. 

For problems separable with positive weights, to obtain an optimal stability hyperplane 
associated with the Winnow mistake bound, we consider fixing Ilwlll such that Ilwlll = 
W > O. It is then natural to define the optimal hyperplane as the (positive weight) solution 
to the following convex programming problem: 

. '" 1 Wj mm~wj n-
W j eJ.Lj 

Tii>lf·1 s.t. w x Y _ or z = , ... , n. 

We use e to denote the base of natural logarithm. Similar to the derivation of SVM, for 
non-separable problems, we introduce a slack variable f.i for each data point (xi, yi), and 
compute a weight vector w. (C) that solves 

w· . 
min2: wj ln-J +C2:c 
W,(. eJ.Lj . 

J ' 

Where C > 0 is a given parameter. Note that to derive the above methods, we have assumed 
that Ilwlll is fixed at Ilwlll = 11J.L111 = W, where W is a given parameter. This implies that 
the derived methods are in fact regularized versions of the normalized Winnow. One can 
also ignore this normalization constraint so that the derived methods correspond to regular
ized versions of the unnormalized Winnow. The entropy regularization condition is natural 



to all exponentiated gradient methods [9], as can be observed from the theoretical results 
in [9]. The regularized normalized Winnow is closely related to the maximum entropy 
discrimination [6] (the two methods are almost identical for linearly separable problems). 
However, in the framework of maximum entropy discrimination, the Winnow connection 
is non-obvious. As we shall show later, it is possible to derive interesting learning bounds 
for our methods that are connected with the Winnow mistake bound. 

Similar to the SVM formulation, the non-separable formulation of regularized Winnow 
approaches the separable formulation as C -+ 00. We shall thus only focus on the non
separable case below. Also similar to an SVM, we can write down the KKT condition and 
let o:i be the Lagrangian multiplier for wT xiyi ~ 1 - ei . After elimination of wand e, 
we obtain (the algebra resembles that of [15], chapter 10, which we shall skip due to the 
limitation of space) the following dual formulation for regularized unnormalized Winnow: 

m.;x L o:i - L f-Lj exp(L o:ix~yi) s.t. o:i E [0, CJ for i = 1, ... ,n. 
. j . 

The j-th component of weight w*(C) is given by w*(C)j = f-Lj exp(2:i o:ix~yi) at the 
optimal solution. For regularized normalized Winnow with IIWllt = W > 0, we obtain 

m.;x L o:i - W In(L f-Lj exp(L o:ix;yi)) s.t. o:i E [0, CJ for i = 1, ... ,n. 
i j i 

The weight w*(C) is given by w*(C)j = Wf-Lj exp(2:i o:ix~yi)/ 2:j f-Lj exp(2:i o:ix~yi) 
at the optimal solution. 

Similar to the Perceptron-like update rule for the dual SVM formulation, it is possible to 
derive Winnow-like update rules for the regularized Winnow formulations. At each data 
point (xi, yi), we fix all O:k with k -# i, and update O:i to maximize the dual objective 
functionals. We shall not try to derive an analytical solution, but rather use a gradient 
ascent method with a learning rate TJ: O:i -+ O:i + TJ a:, LD (O:i), where we use LD to denote 
the dual objective function to be maximized. TJ can be either fixed as a small number or 
computed by the Newton's method. It is not hard to verify that we obtain the following 
update rule for regularized unnormalized Winnow: 

o:i -+ max(min(C, o:i + TJ(1 - wT xiyi)), 0), 

where Wj = f-Lj exp(2:i o:ixjyi). This gradient ascent on the dual variable gives an EGU 
rule as in [9]. Compared WIth the SVM dual update rule which is a soft-margin version 
of the Perceptron update rule, this method naturally corresponds to a soft-margin version 
of unnormalized Winnow update. Similarly, we obtain the following dual update rule for 
regularized normalized Winnow: 

o:i -+ max(min(C, o:i + TJ(1 - wT xiyi)), 0), 

where Wj = Wf-Lj exp(2:i o:ix~yi)/ 2:j f-Lj exp(2:i o:ix~yi). Again, this rule (which is 
an EG rule in [9]) can be naturally regarded as the soft-margin version of the normalized 
Winnow update. In our experience, these update rules are numerically very efficient. Note 
that for regularized normalized Winnow, the normalization constant W needs to be care
fully chosen based on the data. For example, if data is infinity-norm bounded by 1, then it 
does not seem to be appropriate if we choose W ::; 1 since IwT x I ::; 1: a hyperplane with 
IIWllt ::; 1 does not achieve reasonable margin. This problem is less crucial for unnormal
ized Winnow, but the norm of the initial weight f-Lj still affects the solution. 

Besides maximum entropy discrimination which is closely related to regularized normal
ized Winnow, a large margin version of unnormalized Winnow has also been proposed 
based on some heuristics [3,4]. However, their algorithm was purely mistake driven with
out dual variables o:i (the algorithm does not compute an optimal stability hyperplane for 
the Winnow mistake bound). In addition, they did not include a regularization parameter 
C which in practice may be important for non-separable problems. 



3 Some statistical properties of regularized Winnows 

In this section, we derive some learning bounds based on our formulations that minimize 
the Winnow mistake bound. The following result is an analogy of a leave-one-out cross
validation bound for separable SVMs - Theorem 10.7 in [15]. 

Theorem 3.1 The expected misclassification error errn with the true distribution by 
using hyperplane W obtained from the linearly separable (C = 00) unnormal
ized regularized Winnow algorithm with n training samples is bounded by errn < 
n~l Emin(K, 1.5W(2:j Wj In ~) max; Ilxi ll~), where the right-hand side expectation 

is taken with n + 1 random samples (xl, yl), ... , (xn+l, yn+l). K is the number ofsup
port vectors of the solution. Let W be the optimal solution using all the samples with 
dual a i for i = 1, . .. , n + 1. Let w k be the weight obtained from setting a k = 0, then 
W = max(llwI11, Ilwllll, ... ,llwn+llld. 
Proof Sketch. We only describe the major steps due to the limitation of space. Denote by 
illk the weight obtained from the optimal solution by removing (xk , yk) from the training 
sample. Similar to the proof of Theorem 10.7 in [15], we need to bound the leave-one
out cross-validation error, which is at most K. Also note that the leave-one-out cross
validation error is at most I{k : Ilillk - wlllllxklloo ~ I}I. We then use the following 
two inequalities: Ilillk - wllf ::::: 2W(2: j ill] - Wj - Wj In( ill] /Wj )); and 2:j ill] - Wj -

Wj In( ill] / Wj) ::::: 2:j wJ - Wj - Wj In( wJ / Wj) - the latter inequality can be obtained by 
comparing the dual objective functionals and by using the corresponding KKT condition 
of the dual problem. The remaining problem is now reduced to proving that I {k : 2:j wJ -

Wj - Wj In(w] /Wj) ~ 1/(2Wllxkll~)} 1 ::::: ..J2w 2:j Wj In ~ . For the dual formulation, 

by summing over index k of the KKT first order condition with respective to the dual a k , 

multiplied by a k , one obtains 2:k a k = 2:j Wj In~. We thus only need to show that if 

2:j w] - Wj - Wj In(w]/wj) ~ 1/(2Wllxkll~), then a k ~ 2/(3Wllxkll~). This can be 
checked directly through Taylor expansion. 0 

By using the same technique, we may also obtain a bound for regularized normalized Win
now. One disadvantage of the above bound is that it is the expectation of a random estimator 
that is no better than the leave-one-out cross-validation error based on observed data. How
ever, the bound does convey some useful information: for example, we can observe that 
the expected misclassification error (learning curve) converges at a rate of 0 (1/ n) as long 
as W(2: j Wj In ~) and sup Ilxlloo are reasonably bounded. 

It is also not difficult to obtain interesting PAC style bounds by using the covering number 
result for entropy regularization in [16] and ideas in [14]. Although the PAC analysis would 
imply a slightly suboptimal learning curve of O(log n/n) for linearly separable problems, 
the bound itself provides a probability confidence and can be generalized to non-separable 
problems. We state below an example for non-separable problems, which justifies the 
entropy regularization. The bound itself is a direct consequence of Theorem 2.2 and a 
covering number result with entropy regularization in [16]. Note that as in [14], the square 
root can be removed if k-y = 0; "( can also be made data-dependent. 

Theorem 3.2 If the data is infinity-norm bounded as Ilxll oo ::::: b, then consider the family 

r of hyperplanes W such that Ilwlll ::::: a and 2:j Wj In(::III~\\~) ::::: c. Denote by err( w) 
the misclassification error of W with the true distribution. Then there is a constant C such 
that for any "( > 0, with probability 1 - TJ over n random samples, any W E r satisfies: 

k 
err(w) < ..2 + - n 

C nab 1 
-2-b2(a2 + ac) In(- + 2) + In-, 
"( n "( TJ 



where k-y = I{ i : wT xiyi < 'Y} I is the number afsamples with margin less than 'Y-

4 An example 

We use an artificial dataset to show that a regularized Winnow can enhance a Winnow 
just like an SVM can enhance a Perceptron. In addition, it shows that for problems with 
many irrelevant features, the Winnow algorithms are superior to the Perceptron family 
algorithms. 

The data in this experiment are generated as follows. We select an input data dimension 
d, with d = 500 or d = 5000. The first 5 components of the target linear weight w are 
set to ones; the 6th component is -1; and the remaining components are zeros. The linear 
threshold 9 is 2. Data are generated as random vectors with each component randomly 
chosen to be either 0 or 1 with probability 0.5 each. Five percent of the data are given wrong 
labels. The remaining data are given correct labels, but we remove data with margins that 
are less than 1. One thousand training and one thousand test data are generated. 

We shall only consider balanced versions of the Winnows. We also compensate the effect 
of 9 by appending a constant 1 to each data point, as mentioned earlier. We use UWin 
and NWin to denote the basic unnormalized and normalized Winnows respectively. LM
UWin and LM -NWin denote the corresponding large margin versions. The SVM sty Ie large 
margin Perceptron is denoted as LM-Perc. We use 200 iterations over the training data for 
all algorithms. The initial values for the Winnows are set to be the priors: f-Lj = 0.01. 
For online algorithms, we fix the learning rates at 0.01. For large margin Winnows, we 
use learning rates TJ = 0.01 in the gradient ascent update. For (2-norm regularized) large 
margin Perceptron, we use the exact update which corresponds to a choice TJ = 1/ xiT xi. 

Accuracies (in percentage) of different methods are listed in Table 1. For regularization 
methods, accuracies are reported with the optimal regularization parameters. The superior
ity of the regularized Winnows is obvious, especially for high dimensional data. Accuracies 
of regularized algorithms with different regularization parameters are plotted in Figure 1. 
These behaviors are very typical for regularized algorithms. In practice, the optimal regu
larization parameter can be found by cross-validation. 

dimension Perceptron LM-NWin 

82.2 
67.9 

Table 1: Testset accuracy (in percentage) on the artificial dataset 
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Figure 1: Testset accuracy (in percentage) as a function of>. = n~ 



5 Conclusion 

In this paper, we derived regularized versions of Winnow online update algorithms. We 
studied algorithmic and theoretical properties of the newly obtained algorithms, and com
pared them to the Perceptron family algorithms. Experimental results indicated that for 
problems with many irrelevant features, the Winnow family algorithms are superior to Per
ceptron family algorithms. This is consistent with the implications from both the online 
learning theory, and learning bounds obtained in this paper. 
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