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Abstract 

This paper describes a method of dogleg trust-region steps, or re
stricted Levenberg-Marquardt steps, based on a projection pro
cess onto the Krylov subspaces for neural networks nonlinear least 
squares problems. In particular, the linear conjugate gradient (CG) 
method works as the inner iterative algorithm for solving the lin
earized Gauss-Newton normal equation, whereas the outer nonlin
ear algorithm repeatedly takes so-called "Krylov-dogleg" steps, re
lying only on matrix-vector multiplication without explicitly form
ing the Jacobian matrix or the Gauss-Newton model Hessian. That 
is, our iterative dogleg algorithm can reduce both operational 
counts and memory space by a factor of O(n) (the number of pa
rameters) in comparison with a direct linear-equation solver. This 
memory-less property is useful for large-scale problems. 

1 Introduction 

We consider the so-called n eural networks nonlinear least squares prob
lem 1 wherein the objective is to optimize the n weight parameters of neural 
networks (NN) [e.g., multilayer perceptrons (MLP)]' denoted by an n-dimensional 
vector 8 , by minimizing the following: 

(1) 

where ap (8) is the MLP output for the pth training data pattern and tp is the 
desired output. (Of course, these become vectors for a multiple-output MLP.) Here 
r(8) denotes the m-dimensional residual vector composed of ri(8) , i = 1, ... , m , 
for all m training data. 

1The posed problem can be viewed as an implicitly constrained optimization problem as 
long as hidden-node outputs are produced by sigmoidal "squashing" functions [1] . Our al
gorithm exploits the special structure of the sum of squared error measure in Equation (1); 
hence , the other objective functions are outside the scope of this paper. 



The gradient vector and Hessian matrix are given by g = g(9) == JT rand 
H = H( 9) == JT J +S, where J is the m x n Jacobian matrix of r, and S denotes the 
matrix of second-derivative terms. If S is simply omitted based on the "small resid
ual" assumption, then the Hessian matrix reduces to the Gauss-Newton model 
Hessian: i.e., JT J. Furthermore, a family of quasi-Newton methods can be ap
plied to approximate term S alone, leading to the augmented Gauss-Newton model 
Hessian (see, for example, Mizutani [2] and references therein). 

With any form of the aforementioned Hessian matrices, we can collectively write 
the following Newton formula to determine the next step lj in the course of the 
Newton iteration for 9next = 9now + lj: 

Hlj = -g. (2) 

This linear system can be solved by a direct solver in conjunction with a suitable 
matrix factorization. However, typical criticisms towards the direct algorithm are: 

• It is expensive to form and solve the linear equation (2), which requires 
O(mn2 ) operations when m > n; 

• It is expensive to store the (symmetric) Hessian matrix H, which requires 
n(n2+1) memory storage. 

These issues may become much more serious for a large-scale problem. 

In light of the vast literature on the nonlinear optimization, this paper describes how 
to alleviate these concerns, attempting to solve the Newton formula (2) approxi
mately by iterative methods, which form a family of inexact (or truncated) 
Newton methods (see Dembo & Steihaug [3], for instance). An important sub
class ofthe inexact Newton methods are Newton-Krylov methods. In particular, this 
paper focuses on a Newton-CG-type algorithm, wherein the linear Gauss-Newton 
normal equation, 

(3) 

is solved iteratively by the linear conjugate gradient method (known as CGNR) 
for a dogleg trust-region implementation of the well-known Levenberg-Marquardt 
algorithm; hence, the name "dogleg trust-region Gauss-Newton-CGNR" algorithm, 
or "iterative Krylov-dogleg" method (similar to Steihaug [4]; Toint [5]). 

2 Direct Dogleg Trust-Region Algorithms 

In the NN literature, several variants of the Levenberg-Marquardt algorithm 
equipped with a direct linear-equation solver, particularly Marquardt's original 
method, have been recognized as instrumental and promising techniques; see, for 
example, Demuth & Beale [6]; Masters [7]; Shepherd [8]. They are based on a simple 
direct control ofthe Levenberg-Marquardt parameter J.L in (H+J.LI)lj = -g, although 
such a simple J.L-control can cause a number of problems, because of a complicated 
relation between parameter J.L and its associated step length (see Mizutani [9]). 

Alternatively, a more efficient dogleg algorithm [10] can be employed that takes, 
depending on the size of trust region R, the Newton step ljNewton [i.e., the solution 
of Eq. (2)], the (restricted) Cauchy step ljCauchy' or an intermediate dogleg step: 

dcl ( ) ljdogleg = ljCauchy + h ljNewton - ljCauchy , (4) 

which achieves a piecewise linear approximation to a trust-region step, or a restricted 
Levenberg-Marquardt step. Note that ljCauchy is the step that minimizes the local 



quadratic model in the steepest descent direction (i.e. , Eq. (8) with k = 1) . For 
details on Equation (4) , refer to Powell [10]; Mizutani [9 , 2]. 

When we consider the Gauss-Newton step for 8Newton in Equation (4), we must 
solve the overdetermined linear least squares problem: minimize8 Ilr + J8112, for 
which three principal direct linear-equation solvers are: 

(1) Normal equation approach (typically with Cholesky decomposition); 

(2) QR decomposition approach to J 8 = -r; 

(3) Singular value decomposition (SVD) approach to J8 = -r (only recom-
mended when J is nearly rank-deficient). 

Among those three direct solvers, approach (1) to Equation (3) is fastest. (For more 
details , refer to Demmel [11], Chapters 2 and 3.) In a highly overdetermined case 
(with a large data set ; i.e. , m » n) , the dominant cost in approach (1) is the mn2 

operations to form the Gauss-Newton model Hessian by: 
m 

JTJ = LU;U;' (5) 
;=1 

where uT is the ith row vector of J. This cost might be prohibitive even with 
enough storage for JT J. Therefore, to overcome this limitation of direct solvers for 
Equation (3), we consider an iterative scheme in the next section. 

3 Iterative Krylov-Dogleg Algorithm 

The iterative Krylov-dogleg step approximates a trust-region step by iteratively 
approximating the Levenberg-Marquardt trajectory in the Krylov subspace via lin
ear conjugate gradient iterates until the approximate trajectory hits the trust
region boundary; i.e., a CG iterate falls outside the trust-region boundary. In this 
context, the linear CGNR method is not intended to approximate the full Gauss
Newton step [i.e. , the solution of Eq. (3)]. Therefore, the required number of CGNR
iterations might be kept small [see Section 4]. 

The iterative process for the linear-equation solution sequence {8 k } is called the 
inner 2 iteration, whereas the solution sequence {(h} from the Krylov-dogleg algo
rithm is generated by the outer iteration (or epoch), as shown in Figure 1. We now 
describe the inner iteration algorithm, which is identical to the standard linear CG 
algorithm (see Demmel [11], pages 311-312) except steps 2, 4, and 5: 

Algorithm 3.1 : The inner iteration of the Krylov-dogleg algorithm (see Figure 1). 

1. Initialization: 
80 = 0; do = ro = -gnow, and k = 1. (6) 

2. Matrix-vector product (compare Eq. (5) and see Algorithm 3.2): 
m 

z = Hnowdk = J~ow(Jnowdk) = L(uT dk)u;. (7) 
;=1 

2Nonlinear conjugate gradient methods, such as Polak-Ribiere's CG (see Mizutani 
and Jang [13]) and Moller's scaled CG [14], are also widely-employed for training MLPs, 
but those nonlinear versions attempt to approximate the entire Hessian matrix by gen
erating the solution sequence {Ih} directly as the outer nonlinear algorithm. Thus, they 
ignore the special structure of the nonlinear least squares problem; so does Pearlmutter's 
method [15] to the Newton formula, although its modification may be possible. 
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Figure 1: The algorithmic flow of an iterative Krylov-dogleg algorithm. For detailed 
procedures in the three dotted rectangular boxes, refer to Mizu tani and Demmel [12} 
and Algorithm 3. 1 in text. 

rL1rk- l 
3. Analytical step size: 'fJk = dTz 

k 

4. Approximate solution: 
li k = li k - 1 + 'fJk d k. 

If Illikll < Rnow , then go onto the next step 5; otherwise compute 

lik 

lik = Rnowillikll ' 

and terminate. 

5. Linear-system residual: r k = r k-l - 'fJkZ. 

If IIrkl1 2 is small enough , then set Rnow f- Illik ll. and terminate. 

Otherwise, continue with step 6. 

r I r k 6. Improvement: {3k+l = rT r . 
k-l k-l 

(8) 

(9) 

7. Search direction : d k+1 = rk + {3k +l d k. Then, set k = k + 1 and back to step 2. 



The first step given by Equation (8) is always the Cauchy step I5Cauchy ' moving 

9now to the Cauchy point 9Cauchy when Rnow > III5Cauchyll . Then, departing 
from 9 Cauchy , the linear CG constructs a Krylov-dogleg trajectory (by adding a CG 

point one by one) towards the Gauss-Newton point 9Newton until the constructed 
trajectory hits the trust-region boundary (i.e., Ill5k ll :::: Rnow is satisfied in step 4), 
or till the linear-system residual becomes small in step 5 (unlikely to occur for 
small forcing terms; e.g., 0.01) . In this way, the algorithm computes a vector 
between the steepest descent direction and the Gauss-Newton direction, resulting 
in an approximate Levenberg-Marquardt step in the Krylov subspace. 

In step 2, the matrix-vector multiplication of Hdk in Equation (7) can be performed 
with neither the Jacobian nor Hessian matrices explicitly required, keeping only 
several n-dimensional vectors in memory at the same time, as shown next: 

Algorithm 3.2: Matrix-vector multiplication step. 

for i = 1 to m; i.e ., one sweep of all training data: 

(a) do forward propagation to compute the MLP output a; (9) for datum i; 
(b) do backpropagation 3 to obtain the ith row vector u T of matrix J; 

(c) compute (uT dk)u; and add it to z ; 

end for. 

For one sweep of all m data, each of steps (a) and (b) costs at least 2mn (plus 
additional costs that depend on the MLP architectures) and step (c) [i.e., Eq. (7)] 
costs 4mn. Hence, the overall cost of the inner iteration (Algorithm 3.1) can be 
kept as O(mn), especially when the number of inner iterations is small owing to 
our strategy of upper-bounded trust-region radii (e.g., Rupper = 1 for the parity 
problem). Note for "Algorithm for local-model check" in Figure 1 that evaluating 
Vnow (a ratio between the actual error reduction and the reduction predicted by 
the current local quadratic model) needs a procedure similar to Algorithm 3.2. For 
more details on the algorithm in Figure 1, refer to Mizutani and Demmel [12] . 

4 Experiments and Discussions 

In the NN literature, there are numerous algorithmic comparisons available (see, for 
example , Moller [14] ; Demuth & Beale [6] ; Shepherd [8] ; Mizutani [2 ,9, 16]). Due to 
the space limitation, this section compares typical behaviors of our Krylov-dogleg 
Gauss-Newton CGNR (or iterative dogleg) algorithm and Powell 's dogleg-based 
algorithm with a direct linear-equation solver (or direct dogleg) for solving highly 
overdetermined parity problems. In our numerical tests, we used a criterion, in 
which the MLP output for the pth pattern, ap , can be regarded as either "on" 
(1.0) if ap :::: 0.8, or "off" (-1.0) if ap :S -0.8; otherwise, it is "undecided ." The 
initial parameter set was randomly generated in the range [-0.3 ,0.3]' and the two 
algorithms started exactly at the same point in the parameter space. 

Figure 2 presents MLP-Iearning curves in RMSE (root mean squared error) for the 
20-bit and 14-bit parity problems. In (b) and (c), the total execution time [roughly 
(b) 32 days (500 epochs); (c) two hours (450 epochs), both on 299-MHz UltraSparc] 
of the direct dogleg algorithm was normalized for comparison purpose. Notably, the 

3The batch-mode MLP backpropagation can be viewed as an efficient matrix-vector 
multiplication (2mn operations) for computing the graclient .JTr wilhoutfor'ming explicitly 
the m X n Jacobian matrix or the m-climensional residual vector (with some extra costs) . 
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Figure 2: MLP-learning curves of RMSE (root mean squared error) obtained by 
the "iterative dogleg" (solid line) and the "direct dogleg" (broken line): (a) "epoch" 
and (b) "normalized execution time" for the 20-bit parity problem with a standard 
20 x 19 x 1 MLP with hyperbolic tangent node functions (m = 220 , n = 419), and 
(c) "normalized execution time" for the 14-bit parity problem with a 14 x 13 x 1 
MLP (m = 214, n = 209). In ( a), (b), the iterative dogleg reduced the number of 
incorrect patterns down to 21 (nearly RMSE = 0.009) at epoch 838, whereas the 
direct dogleg reached the same error level at epoch 388. In (c), the iterative dogleg 
solved it perfectly at epoch 1,034 and the direct dogleg did so at epoch 401. 

iterative dogleg converged faster to a small RMSE 4 than the direct dogleg at an 
early stage of learning even with respect to epoch. Moreover, the average number 
of inner CG iterations per epoch in the iterative dogleg algorithm was quite small, 
5.53 for (b) and 4.61 for (c). Thus, the iterative dogleg worked nearly (b) nine times 
and (c) four times faster than the direct dogleg in terms of the average execution 
time per epoch. Those speed-up ratios became smaller than n mainly due to the 
aforementioned cost of Algorithm 3.2. Yet, as n increases, the speed-up ratio can 
be larger especially when the number of inner iterations is reasonably small. 

5 Conclusion and Future Directions 

We have compared two batch-mode MLP-Iearning algorithms: iterative and direct 
dogleg trust-region algorithms. Although such a high-dimensional parity problem is 
very special in the sense that it involves a large data set but the size of MLP can be 
kept relatively small, the algorithmic features of the two dogleg methods can be well 
understood from the obtained experimental results. That is, the iterative dogleg 
has the great advantage of reducing the cost of an epoch from O(mn2 ) to O(mn), 
and the memory requirements from O(n2 ) to O(n), a factor of O(n) in both cases. 
When n is large, this is a very large improvement. It also has the advantage offaster 
convergence in the early epochs, achieving a lower RMSE after fewer epochs than 
the direct dogleg. Its disadvantage is that it may need more epochs to converge to a 
very small RMSE than the direct dogleg (although it might work faster in execution 
time). Thus, the iterative dogleg is most attractive when attempting to achieve a 
reasonably small RMSE on very large problems in a short period of time. 

The iterative dogleg is a matrix-free algorithm that extracts information about the 
Hessian matrix via matrix-vector multiplication ; this algorithm might be character
ized as iterative batch-mode learning, an intermediate between direct batch-

4 A standard steepest descent-type online pattern-by-pattern learning (or incremental 
gradient) algorithm (with or without a momentum term) fai led to converge to a small 
RMSE in those parity problems due to hidden-node satl.lmtion [1]. 



mode learning and online pattern-by-pattern learning. Furthermore, the algorithm 
might be implemented in a block-by-block updating mode if a large data set can 
be split into multiple proper-size data blocks; so, it would be of our great inter
est to compare the performance with online-mode learning algorithms for solving 
large-scale real-world problems with a large-scale NN model. 
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