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Jensen's inequality is a powerful mathematical tool and one of the 
workhorses in statistical learning. Its applications therein include the EM 
algorithm, Bayesian estimation and Bayesian inference. Jensen com­
putes simple lower bounds on otherwise intractable quantities such as 
products of sums and latent log-likelihoods. This simplification then per­
mits operations like integration and maximization. Quite often (i.e. in 
discriminative learning) upper bounds are needed as well. We derive and 
prove an efficient analytic inequality that provides such variational upper 
bounds. This inequality holds for latent variable mixtures of exponential 
family distributions and thus spans a wide range of contemporary statis­
tical models. We also discuss applications of the upper bounds including 
maximum conditional likelihood, large margin discriminative models and 
conditional Bayesian inference. Convergence, efficiency and prediction 
results are shown. 1 

1 Introduction 

Statistical model estimation and inference often require the maximization, evaluation, and 
integration of complicated mathematical expressions. One approach for simplifying the 
computations is to find and manipulate variational upper and lower bounds instead of the 
expressions themselves. A prominent tool for computing such bounds is Jensen's inequality 
which subsumes many information-theoretic bounds (cf. Cover and Thomas 1996). In 
maximum likelihood (ML) estimation under incomplete data, Jensen is used to derive an 
iterative EM algorithm [2]. For graphical models, intractable inference and estimation is 
performed via variational bounds [7]. Bayesian integration also uses Jensen and EM-like 
bounds to compute integrals that are otherwise intractable [9]. 

Recently, however, the learning community has seen the proliferation of conditional or 
discriminative criteria. These include support vector machines, maximum entropy discrim­
ination distributions [4], and discriminative HMMs [3]. These criteria allocate resources 
with the given task (classification or regression) in mind, yielding improved performance. 
In contrast, under canonical ML each density is trained separately to describe observations 
rather than optimize classification or regression. Therefore performance is compromised. 

'This is the short version of the paper. Please download the long version with tighter 
bounds, detailed proofs, more results, important extensions and sample matlab code from: 
http://www.media.rnit.edu/ "-'jebara/bounds 



Computationally, what differentiates these criteria from ML is that they not only require 
Jensen-type lower bounds but may also utilize the corresponding upper bounds. The Jensen 
bounds only partially simplify their expressions and some intractabilities remain. For in­
stance, latent distributions need to be bounded above and below in a discriminative setting 
[4] [3]. Metaphorically, discriminative learning requires lower bounds to cluster positive 
examples and upper bounds to repel away from negative ones. We derive these comple­
mentary upper bounds 2 which are useful for discriminative classification and regression. 
These bounds are structurally similar to Jensen bounds, allowing easy migration of ML 
techniques to discriminative settings. 

This paper is organized as follows: We introduce the probabilistic models we will use: 
mixtures of the exponential family. We then describe some estimation criteria on these 
models which are intractable. One simplification is to lower bound via Jensen's inequality 
or EM. The reverse upper bound is then derived. We show implementation and results of 
the bounds in applications (i.e. conditional maximum likelihood (CML». Finally, a strict 
algebraic proof is given to validate the reverse-bound. 

2 The Exponential Family 

We restrict the reverse-Jensen bounds to mixtures of the exponential family (e-family). In 
practice this class of densities covers a very large portion of contemporary statistical models. 
Mixtures of the e-family include Gaussians Mixture Models, Multinomials, Poisson, Hidden 
Markov Models, Sigmoidal Belief Networks, Discrete Bayesian Networks, etc. [1] The 
e-family has the following form: p(Xle) = exp(A(X) + xTe - K(e)). 

E-Distribution A(X) 
Gaussian - ~ XT x-If log( 2n-) 

Multinomial o 

Here, K(e) is convex in e, a multi-dimensional parameter vector. Typically the data vector 
X is constrained to live in the gradient space of K, i.e. X E :eK(e). The e-family has 
special properties (i.e. conjugates, convexity, linearity, etc.) [1]. The reverse-Jensen bound 
also exploits these intrinsic properties. The table above lists example A and K functions 
for Gaussian and multinomial distributions. More generally, though, we will deal with 
mixtures of the e-family (where m represents the incomplete data?, i.e.: 

m m 

These latent probability distributions need to get maximized, integrated, marginalized, 
conditioned, etc. to solve various inference, prediction, and parameter estimation tasks. 
However, such manipulations can be difficult or intractable. 

3 Conditional and Discriminative Criteria 

The combination of ML with EM and Jensen have indeed produced straightforward and 
monotonically convergent estimation procedures for mixtures of the e-family [2] [1] [7]. 
However, ML criteria are non-discriminative modeling techniques for estimating generative 
models. Consequently, they suffer when model assumptions are inaccurate. 

2 A weaker bound for Gaussian mixture regression appears in [6]. Other reverse-bounds are in [8]. 
3Note we use El to denote an aggregate model encompassing all individual Elm \1m. 
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Figure 1: ML vs. CML (Thick Gaussians represent circles, thin ones represent x's). 

For visualization, observe the binary classification4 problem above. Here, our model 
incorrectly has 2 Gaussians (identity covariances) per class but the true data is generated 
from 8 Gaussians. Two solutions are shown, ML and CML. Note the values of joint log­
likelihood I and conditional log-likelihood Ie. The ML solution performs as well as random 
chance guessing while CML classifies the data very well. Thus, CML, in estimating a 
conditional density, propagates the classification task into the estimation criterion. 

In such examples, we are given training examples Xi and corresponding binary labels Ci to 
classify with a latent variable e-family model (mixture of Gaussians). We use m to represent 
the latent missing variables. The corresponding objective functions log-likelihood I and 
conditional log-likelihood Ie are: 

I L , log L= p(m,e"X, 10) 

Ie = L, logL=p(m,e, IX,,0) = L , logL=p(m ,e"X, 10)-logL= L c p(m, e,X, 10) 

The classification and regression task can be even more powerfully exploited in the case of 
discriminative (or large-margin) estimation [4] [5]. Here, hard constraints are posed on a 
discriminant function £ (X IE», the ratio of each class' latent likelihood. Prediction of class 
labels is done via the sign of the function, c = sign£(X IE». 

£(XIE» = log :~~:~:; = logL=p(m ,XI0+)-logL= p(m,X I0_ ) (1) 

In the above log-likelihoods and discriminant functions we note logarithms of sums (latent 
likelihood is basically a product of sums) which cause intractabilities. For instance, it is 
difficult to maximize or integrate the above log-sum quantities. Thus, we need to invoke 
simplifying bounds. 

4 Jensen and EM Bounds 

Recall the definition of Jensen's inequality: f(E{X}) 2': E{f(X)} for concave f. The 
log-summations in I, Ie, and £(X IE» all involve a concave f = log around an expectation, 
i.e. a log-sum or probabilistic mixture over latent variables . We apply Jensen as follows: 

logL=p(m,XI0) 

log L= 0'= exp(A=(X =)+X~0=-JC=(0=)) 

> 

> 

p = ,x I0 . ] log p(= ,X lEl)+log'" p(m,X I0 ) 
n p(n,X lEl) p(= ,XlEl) i...J= 

L= [h=] (X~0= - JC=(0=)) +C 

Above, we have also expanded the bound in the e-family notation. This forms a variational 
lower bound on the log-sum which makes tangential contact with it at e and is much easier 

4These derivations extend to multi-class classification and regression as well. 



to manipulate. Basically, the log-sum becomes a sum of log-exponential family members. 
There is an additive constant term C and the positive scalar hm terms (the responsibilities) 
are given by the terms in the square brackets (here, brackets are for grouping terms and are 
not operators). These quantities are relatively straightforward to compute. We only require 
local evaluations of log-sum values at the current E> to compute a global lower bound. 

If we bound all log-sums in the log-likelihood, we have a lower bound on the objective I 
which we can maximize easily. Iterating maximization and lower bound computation at the 
new E> produces a local maximum of log-likelihood as in EM. However, applying Jensen 
on log-sums in Ie and £(XIE» is not as straightforward. Some terms in these expressions 
involve negative log-sums and so Jensen is actually solving for an upper bound on those 
terms. If we want overall lower and upper bounds on Ie and £(XIE», we need to compute 
reverse-Jensen bounds. 

5 Reverse-Jensen Bounds 

It seems strange we can reverse Jensen (i.e. f(E{X}) ~ E{f(X)}) but it is possible. 
We need to exploit the convexity of the K functions in the e-family instead of exploiting 
the concavity of f = log. However, not only does the reverse-bound have to upper-bound 
the log-sum, it should also have the same form as the Jensen-bound above, i.e. a sum 
of log-exponential family terms. That way, upper and lower bounds can be combined 
homogeneously and ML tools can be quickly adapted to the new bounds. We thus need: 

iogLm cx m exp(Am(Xm)+X;;'0m- K m(0m )) < Lm -[w ml (Y!0 m- K m(0m )) +k (2) 

Here, we give the parameters of the bound directly, refer to the proof at the end of the paper 
for their algebraic derivation. This bound again makes tangential contact at e yet is an 
upper bound on the log-sum 5. 

k iogp(XI0)+ Lm Wm(Y!Elm-Km(Elm)) 

~ ( 8K(0m l I -X)+ 8K(0m l I 
W 7n 88m. em Tn 80m. em 

• I h th t .!:..m. (8K (0m l I -X)+ 8K(0m l I E 8K(0m l 
mIn W Tn sue a w ~ 88m 9:m m. 80m. 0 7n 88 m 

This bound effectively reweights (wm ) and translates (Ym ) incomplete data to obtain com­
plete data. Tighter bounds are possible (i.e. smaller w m ) which also depend on the hm 

terms (see web page). The first condition requires that the W;" generate a valid Ym that 
lives in the gradient space of the K functions (a typical e-family constraint). Thus, from 
local computations of the log-sum's values, gradients and Hessians at the current e, we can 
compute global upper bounds. 

6 Applications and Results 

In Fig. 2 we plot the bounds for a two-component unidimensional Gaussian mixture model 
case and a two component binomial (unidimensional multinomial) mixture model. The 
Jensen-type bounds as well as the reverse-Jensen bounds are shown at various configurations 
of e and X. Jensen bounds are usually tighter but this is inevitable due to the intrinsic 
shape of the log-sum. In addition to viewing many such 2D visualizations, we computed 
higher dimensional bounds and sampled them extensively, empirically verifying that the 
reverse-Jensen bound remained above the log-sum. Below we describe practical uses of 
this new reverse-bound. 

5We can also find multinomial bounds on a-priors jointly with the E> parameters. 
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Figure 2: Jensen (black) and reverse-Jensen (white) bounds on the log-sum (gray). 

6.1 Conditional Maximum Likelihood 

The inequalities above were use to fully lower bound IC and max-
imizing the bound iteratively. This is like the CEM algorithm [6] 1 

except the new bounds handle the whole e-family (i .e. generalized E 
CEM). The synthetic Gaussian mixture model problem problem por- -_1 ~= __ ~ 
trayed in Fig. 1 was implemented. Both ML and CML estimators 
(with reverse-bounds) were initialized in the same random configu-
ration and maximized. The Gaussians converged as in Fig. 1. CML (A) -1) 5 10 15 

classification accuracy was 93% while ML obtained 59%. Figure 2240"IC I 
(A) depicts the convergence of IC per iteration under CML (top line) 
and ML (bottom-line). Similarly, we computed multinomial models 
for 3-class data as 60 base-pair protein chains in Figure (B). 220 

Computationally, utilizing both Jensen and reverse-Jensen bounds (B) 20~ 10 20 30 

for optimizing CML needs double the processing as ML using EM. For example, we 
estimated 2 classes of mixtures of multinomials (5-way mixture) from 40 lO-dimensional 
data points. In non-optimized Matlab code, ML took 0.57 seconds per epoch while CML 
took 1.27 seconds due to extra bound computations. Thus, efficiency is close to EM 
for practical problems. Complexity per epoch roughly scales linearly with sample size, 
dimensions and number of latent variables. 

6.2 Conditional Variational Bayesian Inference 

In [9], Bayesian integration methods were demonstrated on latent-variable models by 
invoking Jensen type lower bounds on the integrals of interest. A similar technique can 
be used to approximate conditional Bayesian integration. Traditionally, we compute the 
joint Bayesian integral from (X,Y) data as p(X, Y) = f p(X, Y I8)p(8IX ,Y)d8 and 
condition it to obtain p(Y IX)i (the superscript indicates we initially estimated a joint 
density). Alternatively, we can compute the conditional Bayesian integral directly. The 



corresponding dependency graphs (Fig. 3 (b) and (c» depict the differences between j oint and 
conditional estimation. The conditional Bayesian integral exploits the graph's factorization, 
to solve p(Y IX) c. 

p(YIX )c = f p(YIX,ElC)[p(El clx ,Y )]dElc= f p(YIX,ElC) [ P( YI ;~yjC1) (0") l dElc 

Jensen and reverse-Jensen bound the terms to permit analytic integration. Iterating this 
process efficiently converges to an approximation of the true integral. We also exhaustively 
solved both Bayesian integrals exactly for a 2 Gaussian mixture model on 4 data points. 
Fig. 3 shows the data and densities. In Fig. 3(d) joint and conditional estimates are 
inconsistent under Bayesian integration (i.e. P(Y IX )C -j. P(Y IX )j). 

~ 
~ 

(a) Data (b) Conditioned Joint (c) Direct Conditional 

. ~pIYlx/ 7YY fP1;'x( 
In~ral. ~gral. 

IX'Y~YIX} 

Condition 

(d) Inconsistency 

Figure 3: Conditioned Joint and Conditional Bayesian Estimates 

6.3 Maximum Entropy Discrimination 

Recently, Maximum Entropy Discrimination (MED) was proposed as an alternative criterion 
for estimating discriminative exponential densities [4] [5] and was shown to subsume SVMs. 
The technique integrates over discriminant functions like Eq. 1 but this is intractable under 
latent variable situations. However, if Jensen and reverse-Jensen bounds are used, the 
required computations can be done. This permits iterative MED solutions to obtain large 
margin mixture models and mixtures of SVMs (see web page). 

7 Discussion 

We derived and proved an upper bound on the log-sum of e-farnily distributions that acts 
as the reverse of the Jensen lower bound. This tool has applications in conditional and 
discriminative learning for latent variable models. For further results, extensions, etc. see: 
http://www.media.mit.edu/ ~jebara/bounds. 

8 Proof 

Starting from Eq. 2, we directly compute k and Ym by ensuring the variational bound 
makes tangential contact with the log-sum at e (i.e. making their value and gradients 
equal) . Substituting k and Y minto Eq. 2, we get constraints on W m via Bregman distances: 

Define F m(El m)=IC(Elm )-1C(8m) -(Elm-8m)TIC' (8 m) . The F functions are convex and have a 
minimum (which is zero) at 8 m • Replace the IC functions with F : 



Here, D= are constants and z=:=X=-K' (0=). Next, define a mapping from these bowl­
shaped functions to quadratics: 

F=(0=) = 9=(<1>=) = !(<I>=-0=f(<I>=-0=) 

This permits us to rewrite Eq. 2 in terms of <1>: 

L cxp{ D=+0=(",=)T z =-!)("'=)} - T L w=9(<I>=) ~ log 't -T - L h=(0=(<1>=)-0=) z= (3) 
:m m cxP{Dm+0:mZm-OCE>m)} m 

Let us find properties of the mapping F =9. Take 2nd derivatives over <1>=: 

K"(0=)~ ~ T +(KI(0=)_KI(0=»)~2~= = 1 

Setting 0==0= above, we get the following for a family of such mappings: ~ 18 = = 

[K"(0=)]- 1/ 2. In an e-farnily, we can always find a O;" such that X==K ' (0;"). By convexity 
of F we create a linear lower bound at 0;": 

F(0;")+(0=-0;") a~~~) 10;" ~ F(0=) = 9(<1>=) 

Take 2nd derivatives over <1>=: F ' (0;") ~2:t:: ~ 1 which is rewritten as: Z a20 m < 1 
m. 811>in, -

In Eq. 3, D=+0=(<I>=)T Z=-9(<I>=) is always concave since its Hessian is: Z= a20,m -1 which 
a",= 

is negative. So, we upper bound these terms by a variational linear bound at 0=: 

L cXP{D~+4>~[KII(0m)]-1/2 Zm} -L w=9(<I>=) > log t -T - L h=(0=(<1>=)-0=)TZ= 
m - m. CXP{Dm+07JLZm-O(E>m)} m 

Take 2nd derivatives of both sides with respect to each <1>= to obtain (after simplifications): 
w 1> Z K"(0 )- I ZT - h Z a20m 
m_m m rn. mmacl>~ 

If we invoke the constraint on w;", we can replace -h=Z= ~2:,m ~ w;"1. Manipulating, we 

get the constraint on w = (as a Loewner ordering here), guaranteeing a global upper bound: 

o 
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