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Abstract 

Olshausen & Field demonstrated that a learning algorithm that 
attempts to generate a sparse code for natural scenes develops a 
complete family of localised, oriented, bandpass receptive fields, 
similar to those of 'simple cells' in VI. This paper describes an 
algorithm which finds a sparse code for sequences of images that 
preserves information about the input. This algorithm when trained 
on natural video sequences develops bases representing the 
movement in particular directions with particular speeds, similar to 
the receptive fields of the movement-sensitive cells observed in 
cortical visual areas. Furthermore, in contrast to previous 
approaches to learning direction selectivity, the timing of neuronal 
activity encodes the phase of the movement, so the precise timing 
of spikes is crucially important to the information encoding. 

1 Introduction 

It was suggested by Barlow [3] that the goal of early sensory processing is to reduce 
redundancy in sensory information and the activity of sensory neurons encodes 
independent features. Neural modelling can give some insight into how these neural 
nets may learn and operate. Atick & Redlich [1] showed that training a neural 
network on patches of natural images, aiming to remove pair-wise correlation 
between neuronal responses, results in neurons having centre-surround receptive 
fields resembling those of retinal ganglion neurons. Olshausen & Field [11,12] 
demonstrated that a learning algorithm that attempts to generate a sparse code for 
natural scenes while preserving information about the visual input, develops a 
complete family of localised, oriented, bandpass receptive fields, similar to those of 
simple-cells in VI. The activities of the neurons implementing this coding signal the 
presence of edges, which are basic components of natural images. Olshausen & 
Field chose their algorithm to create a sparse representation because it possesses a 
higher degree of statistical independence among its outputs [11]. Similar receptive 
fields were also obtained by training a neural net so as to make the responses of 
neurons as independent as possible [4]. Other authors [14,16,5] have shown that 
direction selectivity of the simple-cells may also emerge from unsupervised 



learning. However, there is no agreed way of how the receptive fields of neurons 
that encode movements are created. 

This paper describes an algorithm which finds a sparse code for sequences of 
images that preserves the critical information about the input. This algorithm, 
trained on natural video images, develops bases representing movements in 
particular directions at particular speeds, similar to the receptive fields of the 
movement-sensitive cells observed in early visual areas [9,2]. The activities of the 
neurons implementing this encoding signal the presence of edges moving with 
certain speeds in certain directions, with each neuron having its preferred speed and 
direction. Furthermore, in contrast to all the previous approaches, the timing of 
neural activity encodes the movement's phase, so the precise timing of spikes is 
crucially important for information coding. 

The proposed algorithm is an extension of the one proposed by Olshausen & Field. 
Hence it is a high level algorithm, which cannot be directly implemented in a 
biologically plausible neural network. However, a plausible neural network 
performing a similar task can be developed. The proposed algorithm is described in 
Section 2. Sections 3 and 4 show the methods and the results of simulations. Finally, 
Section 5 discusses how the algorithm differs from the previous approaches, and the 
implications of the presented results. 

2 Description of the algorithm 

Since the proposed algorithm is an extension of the one described by Olshausen & 
Field [11 ,12], this section starts with a brief introduction of the main ideas of their 
algorithm. They assume that an image x can be represented in terms of a linear 
superposition of basis functions Ai. For clarity of notation, let us represent both 
images and bases as vectors created by concatenating rows of pixels as shown in 
Figure 1, and let each number in the vector describe the brightness of the 
corresponding pixel. Let the basis functions Ai form the columns of a matrix A . Let 
the weighting of the above mentioned linear superposition (which changes from one 
image to the next) be given by a vector s: 

x=As (1) 

The image x may be encoded, for example using the inverted transformation where 
it exists. Hence, the image code s is determined by the choice of basis functions Ai. 
Olshausen & Field [11,12] try to find bases that result in a code s that preserves 
information about the original image x and that is sparse. Therefore, they minimise 
the following cost function with respect to A, where A, denotes a constant 
determining the importance of sparseness [11] : 

E = -[preserved information in s about x] - A,[sparseness of s] (2) 

The algorithm proposed in this paper is similar, but it takes into consideration the 
temporal order of images. Let us divide time into intervals (to be able to treat it as 
discrete) and denote the image observed at time t and the code generated by xt and 
st, respectively. The Olshausen & Field algorithm assumes that image x is a linear 
superposition (mixture) of s. By contrast, our algorithm assumes that images are 
convolved mixtures of s, i.e., st depends not only on xt but also on xt-l, xt-2, ... , Xt -(T-l) 

(i.e. Sl depends on T preceding Xl). Therefore, each basis function may also be 

image ~ ...... • I I I I I • I xT 

Figure 1: Representing images as vectors. 
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Figure 2: Encoding of an image sequence. In the example, there are two basis 
functions, each described by T = 3 vectors. The first basis encodes movement to 

the right, the second encodes movement down. A sequence x of 6 images is 
shown on the top and the corresponding code s below. A "spike" over a 

coefficient .1'/ denotes that .1'/ = 1, the absence of a "spike" denotes .1'/ = o. 

represented as a sequence of vectors AiO, Ail, ... , Ar l (corresponding to a sequence 
of images). These vectors create columns of the mixing matrices A 0, A I, ... , AIel. 

Each coefficient .1'/ describes how strongly the basis function Ai is present in the last 
T images. This relationship is illustrated in Figure 2 and is expressed by Equation 3. 

T-I 

x' = [.Afsf+1 (3) 
f=O 

In the proposed algorithm, the basis functions A are also found by optimising the 
cost function of Equation 2. The detailed method of this minimisation is described 
below, and this paragraph gives its overview. In each optimisation step, a sequence 
x of P image patches is selected from a random position in the video sequence (P 2: 
2D. Each of the optimisation steps consists of two operations. Firstly, the sequence 
of coefficient vectors s which minimises the cost function E for the images x is 
found. Secondly, the basis matrices A are modified in the direction opposite to the 
gradient of E over A, thus minimising the cost function. These two operations are 
repeated for different sequences of image patches. 

In Equation 2, the term "preserved information in s about x" expresses how weJl x 
may be reconstructed on the basis of s. In particular, it is defined as the negative of 
the square of the reconstruction error. The reconstruction error is the difference 
between the original image sequence x and the sequence of images r reconstructed 
from s. The sequence r may be reconstructed from s in the foJlowing way: 

T- I 

r' = [.A fsf+1 (4) 
f=O 

The precise definition of the cost function is then given by: 

P-T+I P [ .t ) 
E = ~ ~ (x~ - r; Y + A ~ ~ C ~ (5) 

In Equation 5, C is a nonlinear function, and (j is a scaling constant. Images at the 
start and end of the sequence (e.g. , Xl, xP) may share some bases with images not in 
the sequence (e.g., xO, x · l , XP+I). To avoid this problem, only the middle images are 
reconstructed and only for them is the reconstruction error computed in the cost 
function. In particular, only images from T to P-T+l are reconstructed - since the 
assumed length of the bases is T, those images contain only the bases whose other 



parts are also contained in the sequence. Since only images from T to P-T+1 are 
reconstructed, it is clear from Equation 4, that only coefficients ST to sP need to be 
found. These considerations explain the limits of the outer summations in both 
terms of Equation 5. 

For each image sequence, in the first operation, the coefficients ST, ST+!, ... , sP 
minimising E are found using an optimisation method. Minus the gradient of E over 
s is given by: 

-~ = 2"""" (Xl - r' ),4,'-1 -~ctS( 1 chi i... i... J J 1 (J" (J" 
• i t j 

(6) 

In the second operation, the bases A are modified so as to minimise E: 

(7) 

In equation 7, 17 denotes the learning rate. The vector length of each basis function 
Ai is adapted over time so as to maintain equal variance on each coefficient s, m 
exactly the same way as described in [12]. 

3 Methods of simulations 

The proposed algorithm was implemented in Matlab except for finding s minimising 
E, which was implemented in C++, using the conjugate gradient method for the sake 
of speed. In the implementation, the original codes of Olshausen & Field were used 
and modified (downloaded from http://redwood.ucdavis.edu/bruno/sparsenet.html). 

Many parameters of the proposed algorithm were taken from [11]. In particular, 
C(x) = In(1+x2), cris the standard deviation of pixels' colours in the images, A is set 
up such that A/cr = 0.14, and 17 = 1. ~A is averaged over 100 image sequences, and 
hence the bases A are updated with the average of ~A every 100 optimisation steps. 
The length of an image sequence P is set up such that P = 3T. 

The proposed algorithm was tested on two types of video sequences: 'toy' problems 
and natural video sequences. Each of the toy sequences consisted of 10 frames -
100x100 pixels. In the sequence, there were 20 moving lines. Each line was either 
horizontal or vertical and 1 pixel thick. Each line was either black or white, which 
corresponded to positive or negative values of the elements of x vectors (the grey 
background corresponded to zero). Each horizontal line moved up or down, each 
vertical - left or right, with the speed of one pixel per frame. 

Then the algorithm was tested on five natural video sequences showing moving 
people or animals. In each optimisation step, a sequence of image patches was 
selected from a randomly chosen video. The video sequences were preprocessed. 
First, to remove the static aspect of the images, from each frame the previous one 
was subtracted, i.e., each image encoded the difference between two successive 
frames of the video. This simple operation reduces redundancy in data since the 
corresponding pixels in the successive frames tend to have similar colours. An 
analogous operation may be performed by the retina, since the ganglion cells 
typically respond to the changes in light intensity [10]. 

Then, to remove the pair-wise correlation between pixels of the same frame , Zero
phase Component Analysis (ZCA) [4] was applied to each of the patches from the 
selected sequence, i.e., x' := W x', where W = (X'(X'?)-I> i.e., W is equal to the 
inverted square root of the covariance matrix of x. The filters in W have centre
surround receptive fields resembling those of retinal ganglion neurons [4]. 


