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Abstract 

Local "belief propagation" rules of the sort proposed by Pearl [15] are 
guaranteed to converge to the correct posterior probabilities in singly 
connected graphical models. Recently, a number of researchers have em
pirically demonstrated good performance of "loopy belief propagation"
using these same rules on graphs with loops. Perhaps the most dramatic 
instance is the near Shannon-limit performance of "Turbo codes", whose 
decoding algorithm is equivalent to loopy belief propagation. 
Except for the case of graphs with a single loop, there has been little theo
retical understanding of the performance of loopy propagation. Here we 
analyze belief propagation in networks with arbitrary topologies when 
the nodes in the graph describe jointly Gaussian random variables. We 
give an analytical formula relating the true posterior probabilities with 
those calculated using loopy propagation. We give sufficient conditions 
for convergence and show that when belief propagation converges it gives 
the correct posterior means for all graph topologies, not just networks 
with a single loop. 
The related "max-product" belief propagation algorithm finds the max
imum posterior probability estimate for singly connected networks. We 
show that, even for non-Gaussian probability distributions, the conver
gence points of the max-product algorithm in loopy networks are max
ima over a particular large local neighborhood of the posterior proba
bility. These results help clarify the empirical performance results and 
motivate using the powerful belief propagation algorithm in a broader 
class of networks. 

Problems involving probabilistic belief propagation arise in a wide variety of applications, 
including error correcting codes, speech recognition and medical diagnosis. If the graph 
is singly connected, there exist local message-passing schemes to calculate the posterior 
probability of an unobserved variable given the observed variables. Pearl [15] derived such 
a scheme for singly connected Bayesian networks and showed that this "belief propagation" 
algorithm is guaranteed to converge to the correct posterior probabilities (or "beliefs"). 

Several groups have recently reported excellent experimental results by running algorithms 
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equivalent to Pearl's algorithm on networks with loops [8, 13, 6]. Perhaps the most dramatic 
instance of this performance is for "Turbo code" [2] error correcting codes. These codes 
have been described as "the most exciting and potentially important development in coding 
theory in many years" [12] and have recently been shown [10, 11] to utilize an algorithm 
equivalent to belief propagation in a network with loops. 

Progress in the analysis of loopy belief propagation has been made for the case of networks 
with a single loop [17, 18, 4, 1] . For these networks, it can be shown that (1) unless 
all the compatabilities are deterministic, loopy belief propagation will converge. (2) The 
difference between the loopy beliefs and the true beliefs is related to the convergence rate 
of the messages - the faster the convergence the more exact the approximation and (3) If 
the hidden nodes are binary, then the loopy beliefs and the true beliefs are both maximized 
by the same assignments, although the confidence in that assignment is wrong for the loopy 
beliefs. 

In this paper we analyze belief propagation in graphs of arbitrary topology, for nodes de
scribing jointly Gaussian random variables. We give an exact formula relating the correct 
marginal posterior probabilities with the ones calculated using loopy belief propagation. 
We show that if belief propagation converges, then it will give the correct posterior means 
for all graph topologies, not just networks with a single loop. We show that the covari
ance estimates will generally be incorrect but present a relationship between the error in 
the covariance estimates and the convergence speed. For Gaussian or non-Gaussian vari
ables, we show that the "max-product" algorithm, which calculates the MAP estimate in 
singly connected networks, only converges to points that are maxima over a particular large 
neighborhood of the posterior probability of loopy networks. 

1 Analysis 

To simplify the notation, we assume the graphical model has been preprocessed into an 
undirected graphical model with pairwise potentials. Any graphical model can be con
verted into this form, and running belief propagation on the pairwise graph is equivalent 
to running belief propagation on the original graph [18]. We assume each node X i has a 
local observation Yi . In each iteration of belief propagation, each node X i sends a message 
to each neighboring X j that is based on the messages it received from the other neighbors, 
its local observation Yl and the pairwise potentials Wij(Xi , Xj) and Wii(Xi, Yi) . We assume 
the message-passing occurs in parallel. 

The idea behind the analysis is to build an unwrapped tree. The unwrapped tree is the 
graphical model which belief propagation is solving exactly when one applies the belief 
propagation rules in a loopy network [9, 20, 18]. It is constructed by maintaining the same 
local neighborhood structure as the loopy network but nodes are replicated so there are no 
loops. The potentials and the observations are replicated from the loopy graph. Figure 1 (a) 
shows an unwrapped tree for the diamond shaped graph in (b). By construction, the belief 
at the root node X-I is identical to that at node Xl in the loopy graph after four iterations of 
belief propagation. Each node has a shaded observed node attached to it, omitted here for 
clarity. 

Because the original network represents jointly Gaussian variables, so will the unwrapped 
tree. Since it is a tree, belief propagation is guaranteed to give the correct answer for the 
unwrapped graph. We can thus use Gaussian marginalization formulae to calculate the 
true mean and variances in both the original and the unwrapped networks. In this way, we 
calculate the accuracy of belief propagation for Gaussian networks of arbitrary topology. 

We assume that the joint mean is zero (the means can be added-in later). The joint distri-
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Figure 1: Left: A Markov network with mUltiple loops. Right: The unwrapped network 
corresponding to this structure. 

bution of z = ( : ) is given by P(z) = ae-!zTVz, where V = (~:: ~::) . It 

is straightforward to construct the inverse covariance matrix V of the joint Gaussian that 
describes a given Gaussian graphical model [3]. 

Writing out the exponent of the joint and completing the square shows that the mean I-' of 
x, given the observations y, is given by: 

(1) 

and the covariance matrix C~IY of x given y is: C~IY = V~-;l. We will denote by C~dY the 
ith row of C~IY so the marginal posterior variance of Xi given the data is (72 (i) = C~i Iy (i). 

We will use - for unwrapped quantities. We scan the tree in breadth first order and denote by 
x the vector of values in the hidden nodes of the tree when so scanned. Simlarly, we denote 
by y the observed nodes scanned in the same order and Vn , V~y the inverse covariance 
matrices. Since we are scanning in breadth first order the last nodes are the leaf nodes and 
we denote by L the number of leaf nodes. By the nature of unwrapping, tL(1) is the mean 
of the belief at node Xl after t iterations of belief propagation, where t is the number of 
unwrappings. Similarly 0-2 (1) = 6~1Iy(1) is the variance of the belief at node Xl after t 
iterations. 

Because the data is replicated we can write y = Oy where O(i, j) = 1 if Yi is a replica of Yj 

and 0 otherwise. Since the potentials W(Xi' Yi) are replicated, we can write V~yO = OV~y. 
Since the W (Xi, X j) are also replicated and all non-leaf Xi have the same connectivity as 
the corresponding Xi, we can write V~~O = OVzz + E where E is zero in all but the last 
L rows. When these relationships between the loopy and unwrapped inverse covariance 
matrices are substituted into the loopy and unwrapped versions of equation I, one obtains 
the following expression, true for any iteration [19]: 

(2) 

where e is a vector that is zero everywhere but the last L components (corresponding to the 
leaf nodes). Our choice of the node for the root of the tree is arbitrary, so this applies to 
all nodes of the loopy network. This formula relates, for any node of a network with loops, 
the means calculated at each iteration by belief propagation with the true posterior means. 

Similarly when the relationship between the loopy and unwrapped inverse covariance ma
trices is substituted into the loopy and unwrapped definitions of C~IY we can relate the 
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Figure 2: The conditional correlation between the root node and all other nodes in the 
unwrapped tree of Fig. 1 after eight iterations. Potentials were chosen randomly. Nodes 
are presented in breadth first order so the last elements are the correlations between the root 
node and the leaf nodes. We show that if this correlation goes to zero, belief propagation 
converges and the loopy means are exact. Symbols plotted with a star denote correlations 
with nodes that correspond to the node Xl in the loopy graph. The sum of these correlations 
gives the correct variance of node Xl while loopy propagation uses only the first correlation. 

marginalized covariances calculated by belief propagation to the true ones [19]: 
-2 2 - -a (1) = a (1) + CZllyel - Czt/ye2 (3) 

where el is a vector that is zero everywhere but the last L components while e2 is equal 
to 1 for all nodes in the unwrapped tree that are replicas of Xl except for Xl. All other 
components of e2 are zero, 

Figure 2 shows Cz1lY for the diamond network in Fig. 1. We generated random potential 
functions and observations and calculated the conditional correlations in the unwrapped 
tree. Note that the conditional correlation decreases with distance in the tree - we are 
scanning in breadth first order so the last L components correspond to the leaf nodes. 
As the number of iterations of loopy propagation is increased the size of the unwrapped 
tree increases and the conditional correlation between the leaf nodes and the root node 
decreases. 

From equations 2-3 it is clear that if the conditional correlation between the leaf nodes and 
the root nodes are zero for all sufficiently large unwrappings then (1) belief propagation 
converges (2) the means are exact and (3) the variances may be incorrect. In practice the 
conditional correlations will not actually be equal to zero for any finite unwrapping. In [19] 
we give a more precise statement: if the conditional correlation of the root node and the 
leaf nodes decreases rapidly enough then (1) belief propagation converges (2) the means 
are exact and (3) the variances may be incorrect. We also show sufficient conditions on the 
potentials III (Xi, X j) for the correlation to decrease rapidly enough: the rate at which the 
correlation decreases is determined by the ratio of off-diagonal and diagonal components 
in the quadratic fonn defining the potentials [19]. 

How wrong will the variances be? The tenn CZllye2 in equation 3 is simply the sum of 
many components of Cz11y . Figure 2 shows these components. The correct variance is 
the sum of all the components witHe the belief propagation variance approximates this sum 
with the first (and dominant) tenn. Whenever there is a positive correlation between the 
root node and other replicas of Xl the loopy variance is strictly less than the true variance 
- the loopy estimate is overconfident. 
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Figure 3: (a) 25 x 25 graphical model for simulation. The unobserved nodes (unfilled) were 
connected to their four nearest neighbors and to an observation node (filled). (b) The error 
of the estimates of loopy propagation and successive over-relaxation (SOR) as a function 
of iteration. Note that belief propagation converges much faster than SOR. 

Note that when the conditional correlation decreases rapidly to zero two things happen. 
First, the convergence is faster (because CZdyel approaches zero faster) . Second, the ap

proximation error of the variances is smaller (because CZ1 /y e2 is smaller). Thus we have 
shown, as in the single loop case, quick convergence is correlated with good approximation. 

2 Simulations 

We ran belief propagation on the 25 x 25 2D grid of Fig. 3 a. The joint probability was: 

(4) 

where Wij = 0 if nodes Xi, Xj are not neighbors and 0.01 otherwise and Wii was randomly 
selected to be 0 or 1 for all i with probability of 1 set to 0.2. The observations Yi were 
chosen randomly. This problem corresponds to an approximation problem from sparse 
data where only 20% of the points are visible. 

We found the exact posterior by solving equation 1. We also ran belief propagation and 
found that when it converged, the calculated means were identical to the true means up 
to machine precision. Also, as predicted by the theory, the calculated variances were too 
small - the belief propagation estimate was overconfident. 

In many applications, the solution of equation 1 by matrix inversion is intractable and iter
ative methods are used. Figure 3 compares the error in the means as a function of iterations 
for loopy propagation and successive-over-relaxation (SOR), considered one of the best 
relaxation methods [16]. Note that after essentially five iterations loopy propagation gives 
the right answer while SOR requires many more. As expected by the fast convergence, the 
approximation error in the variances was quite small. The median error was 0.018. For 
comparison the true variances ranged from 0.01 to 0.94 with a mean of 0.322. Also, the 
nodes for which the approximation error was worse were indeed the nodes that converged 
slower. 
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3 Discussion 

Independently, two other groups have recently analyzed special cases of Gaussian graphical 
models. Frey [7] analyzed the graphical model corresponding to factor analysis and gave 
conditions for the existence of a stable fixed-point. Rusmevichientong and Van Roy [14] 
analyzed a graphical model with the topology of turbo decoding but a Gaussian joint den
sity. For this specific graph they gave sufficient conditions for convergence and showed 
that the means are exact. 

Our main interest in the Gaussian case is to understand the performance of belief propaga
tion in general networks with multiple loops. We are struck by the similarity of our results 
for Gaussians in arbitrary networks and the results for single loops of arbitrary distribu
tions [18]. First, in single loop networks with binary nodes, loopy belief at a node and the 
true belief at a node are maximized by the same assignment while the confidence in that 
assignment is incorrect. In Gaussian networks with multiple loops, the mean at each node 
is correct but the confidence around that mean may be incorrect. Second, for both single
loop and Gaussian networks, fast belief propagation convergence correlates with accurate 
beliefs. Third, in both Gaussians and discrete valued single loop networks, the statistical 
dependence between root and leaf nodes governs the convergence rate and accuracy. 

The two models are quite different. Mean field approximations are exact for Gaussian 
MRFs while they work poorly in sparsely connected discrete networks with a single loop. 
The results for the Gaussian and single-loop cases lead us to believe that similar results 
may hold for a larger class of networks. 

Can our analysis be extended to non-Gaussian distributions? The basic idea applies to 
arbitrary graphs and arbitrary potentials: belief propagation is performing exact inference 
on a tree that has the same local neighbor structure as the loopy graph. However, the linear 
algebra that we used to calculate exact expressions for the error in belief propagation at any 
iteration holds only for Gaussian variables. 

We have used a similar approach to analyze the related "max-product" belief propagation 
algorithm on arbitrary graphs with arbitrary distributions [5] (both discrete and continuous 
valued nodes). We show that if the max-product algorithm converges, the max-product 
assignment has greater posterior probability then any assignment in a particular large region 
around that assignment. While this is a weaker condition than a global maximum, it is much 
stronger than a simple local maximum of the posterior probability. 

The sum-product and max-product belief propagation algorithms are fast and paralleliz
able. Due to the well known hardness of probabilistic inference in graphical models, belief 
propagation will obviously not work for arbitrary networks and distributions. Nevertheless, 
a growing body of empirical evidence shows its success in many networks with loops. Our 
results justify applying belief propagation in certain networks with mUltiple loops. This 
may enable fast, approximate probabilistic inference in a range of new applications. 
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Abstract 

Layered Sigmoid Belief Networks are directed graphical models 
in which the local conditional probabilities are parameterised by 
weighted sums of parental states. Learning and inference in such 
networks are generally intractable, and approximations need to be 
considered. Progress in learning these networks has been made by 
using variational procedures. We demonstrate, however, that vari
ational procedures can be inappropriate for the equally important 
issue of inference - that is,· calculating marginals of the network. 
We introduce an alternative procedure, based on assuming that the 
weighted input to a node is approximately Gaussian distributed. 
Our approach goes beyond previous Gaussian field assumptions in 
that we take into account correlations between parents of nodes. 
This procedure is specialized for calculating marginals and is sig
nificantly faster and simpler than the variational procedure. 

1 Introduction 

Layered Sigmoid Belief Networks [1] are directed graphical models [2] in which 
the local conditional probabilities are parameterised by weighted sums of parental 
states, see fig ( 1). This is a graphical representation of a distribution over a set of 
binary variables Si E {a, I}. Typically, one supposes that the states of the nodes 
at the bottom of the network are generated by states in previous layers. Whilst, in 
principle, there is no restriction on the number of nodes in any layer, typically, one 
considers structures similar to the "fan out" in fig(l) in which higher level layers 
provide an "explanation" for patterns generated in lower layers. Such graphical 
models are attractive since they correspond to layers of information processors, of 
potentially increasing complexity. Unfortunately, learning and inference in such net
works is generally intractable, and approximations need to be considered. Progress 
in learning has been made by using variational procedures [3,4, 5]. However, an
other crucial aspect remains inference [2]. That is, given some evidence ( or none), 
calculate the marginal of a variable, conditional on this evidence. This assumes 
that we have found a suitable network from some learning procedure, and now wish 
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to query this network. Whilst the variational procedure is attractive for learning, 
since it generally provides a bound on the likelihood of the visible units, we demon
strate that it may not always be equally appropriate for the inference problem. 

A directed graphical model defines a distribution over 
a set of variables s = (S1 ... sn) that factorises into 
the local conditional distributions, 

n 

p(S1 . .. sn) = IIp(silll'i) (1) 
i=1 

where lI'i denotes the parent nodes of node i . In a 
layered network, these are the nodes in the proceed
ing layer that feed into node i. In a sigmoid belief 
network the local probabilities are defined as 

Figure 1: A Layered Sig
moid Belief Network 

P (s; = ll~;) = " ( ~ W;jSj + 0;) =" (h;) (2) 

where the "field" at node i is defined as hi = 2:j WijSj + fh and er(h) = 1/(1 + e- h ). 

Wij is the strength of the connection between node i and its parent node j; if j is 
not a parent of i we set Wij = O. Oi is a bias term that gives a parent-independent 
bias to the state of node i . 

We are interested in inference - in particular, calculating marginals of the network 
for cases with and without evidential nodes. In section (2) we describe how to 
approximate the quantities p(Si = 1) and discuss in section (2.1) why our method 
can improve on the standard variational mean field theory. Conditional marginals, 
such as p(Si = IISj = 1, Sk = 0) are considered in section (3). 

2 Gaussian Field Distributions 

Under the 0/1 coding for the variables Si, the mean of a variable, mi is given by the 
probability that it is in state 1. Using the fact from (2) that the local conditional 
distribution of node i is dependent on its parents only through its field hi, we have 

(3) 

where we use the notation «(-)p to denote an average with respect to the distri
bution p. If there are many parents of node i, a reasonable assumption is that the 
distribution of the field hi will be Gaussian, p(hi ) ~ N (J,Li,er[). Under this Gaus
sian Field (GF) assumption, we need to work out the mean and variance, which are 
given by 

(4) 
j j 

err = ((Llhi)2) = L WijWikRjk (5) 
j,k 

where Rjk = (LlSjLlsk). We use the notation Ll (-) == (-) - «(.) . 

The diagonal terms of the node covariance matrix are ~i = mi (1- mi)' In contrast 
to previous studies, we include off diagonal terms in the calculation of R [4] . From 
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(5) we only need to find correlations between parents i and j of a node. These are 
easy to calculate in the layered networks that we are considering, because neither i 
nor j is a descendant of the other: 

Rjj = p(Sj = 1, Sj = 1) - mjmj 

= J p(Si = Ilhj)p(Sj = Ilhj)p(hj, hj)dh - mimj 

= (0" (hd 0" (h j ) (h h) - mjmj 
P J, J 

(6) 

(7) 

(8) 

Assuming that the joint distribution p( h j , hj ) is Gaussian, we again need its mean 
and covariance, given by 

~ij = (D.hjD.hj) = L WjkWjl (D.skD.SI) = L WikWjlRkl (10) 
kl kl 

Under this scheme, we have a closed set of equations, (4,5,8,10) for the means 
mj and covariance matrix Rij which can be solved by forward propagation of the 
equations. That is, we start from nodes without parents, and then consider the 
next layer of nodes, repeating the procedure until a full sweep through the network 
has been completed. The one and two dimensional field averages, equations (3) 
and (8), are computed using Gaussian Quadrature. This results in an extremely 
fast procedure for approximating the marginals mi, requiring only a single sweep 
through the network. 

Our approach is related to that of [6] by the common motivating assumption that 
each node has a large number of parents. This is used in [6] to obtain actual 
bounds on quantities of interest such as joint marginals. Our approach does not 
give bounds. Its advantage, however, is that it allows fluctuations in the fields hi, 
which are effectively excluded in [6] by the assumed scaling of the weights Wij with 
the number of parents per node. 

2.1 Relation to Variational Mean Field Theory 

In the variational approach, one fits a tractable approximating distribution Q to 
the SBN. Taking Q factorised, Q(s) = Dj m:' (1 - md l - 3 • we have the bound 

In p (Sl ... sn) 2: L {-mj In mj - (1 - md In (1 - md} 
i 

The final term in (11) causes some difficulty even in the case in which Q is a fac
torised model. Formally, this is because this term does not have the same graphical 
structure as the tractable model Q. One way around around this difficulty is to em
ploy a further bound, with associated variational parameters [7]. Another approach 
is to make the Gaussian assumption for the field hi as in section (2). Because Q is 
factorised, corresponding to a diagonal correlation matrix R, this gives [4] 

(12) 
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where Pi = ~j Wijmj + Oi and (1[ = ~j w[jmj(l - mj). Note that this is a one 
dimensional integral of a smooth function. In contrast to [4] we therefore evaluate 
this quantity using Gaussian Quadrature. This has the advantage that no extra 
variational parameters need to be introduced. Technically, the assumption of a 
Gaussian field distribution means that (11) is no longer a bound. Nevertheless, in 
practice it is found that this has little effect on the quality of the resulting solution. 
In our implementation of the variational approach, we find the optimal parameters 
mi by maximising the above equation for each component mi separately, cycling 
through the nodes until the parameters mi do not change by more than 10- 1°. 
This is repeated 5 times, and the solution with the highest bound score is chosen. 
Note that these equations cannot be solved by forward propagation alone since the 
final term contains contributions from all the nodes in the network. This is in 
contrast to the GF approach of section (2) . Finding appropriate parameters mi by 
the variational approach is therefore rather slower than using the GF method. 

In arriving at the above equations, we have made two assumptions. The first is 
that the intractable distribution is well approximated by a factorised model. The 
second is that the field distribution is Gaussian. The first step is necessary in 
order to obtain a bound on the likelihood of the model (although this is slightly 
compromised by the Gaussian field assumption). In the GF approach we dispense 
with this assumption of an effectively factorised network (partially because if we 
are only interested in inference, a bound on the model likelihood is less relevant). 
The GF method may therefore prove useful for a broader class of networks than the 
variational approach. 

2.2 Results for unconditional marginals 

We compared three procedures for estimating the conditional values p(Si = 1) for 
all the nodes in the network, namely the variational theory, as described in section 
(2.1), the diagonal Gaussian field theory, and the non-diagonal Gaussian field theory 
which includes correlation effects between parents. Results for small weight values 
Wij are shown in fig(2). In this case, all three methods perform reasonably well, 
although there is a significant improvement in using the GF methods over the 
variational procedure; parental correlations are not important (compare figs(2b) 
and (2c)) . In fig(3) the weights and biases are chosen such that the exact mean 
variables mi are roughly 0.5 with non-trivial correlation effects between parents. 
Note that the variational mean field theory now provides a poor solution, whereas 
the GF methods are relatively accurate. The effect of using the non-diagonal R 
terms is beneficial, although not dramatically so. 

3 Calculating Conditional Marginals 

We consider now how to calculate conditional marginals, given some evidential 
nodes. (In contrast to [6], any set of nodes in the network, not just output nodes, 
can be considered evidential.) We write the evidence in the following manner 

E = {SCi = SCi' . . . Sc" = SC,.} = {ECl ... Ec,.} 

The quantities that we are interested in are conditional marginals which, from Bayes 
rule are related to the joint distribution by 

P (Si = liE) = P (Si = 1, E) 
P (Si = 0, E) + P (Si = 1, E) 

(13) 

That is, provided that we have a procedure for estimating joint marginals, we can 
obtain conditional marginals too. Without loss of generality, we therefore consider 
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Figure 2: Error in approximating p(Si = 1) for the network in fig(l), averaged over 
all the nodes in the network. In each of 100 trials, weights were drawn from a 
zero mean, unit variance Gaussian; biases were set to O. Note the different scale 
in (b) and (c). In (a) we use the variational procedure with a factorised Q, as 
in section (2.1). In (b) we use the Gaussian field equations, assuming a diagonal 
covariance matrix R. This procedure was repeated in (c) including correlations 
between parents. 

E+ = E U {Si = I}, which then contains n + 1 "evidential" variables. That is, the 
desired marginal variable is absorbed into the evidence set . For convenience, we 
then split the nodes into two sets, those containing the evidential or "clamped" 
nodes, C, and the remaining "free" nodes F . The joint evidence is then given by 

(14) 
8F 

= I:p (ECllll'~l) ... p (En+llll'~"+l) p (sh 11I'jJ . . . p (Sfm 11I'jJ 
8F (15) 

where 11'; are the parents of node i, with any evidential parental nodes set to their 
values as specified in E+. In the sigmoid belief network 

if i is an evidential node 
otherwise (16) 

p(Eklll'Z) is therefore determined by the distribution of the field hZ = Li WkiS; +Ok . 
Examining (15), we see that the product over the "free" nodes defines a SBN in 
which the local probability distributions are given by those of the original network, 
but with any evidential parental nodes clamped to their evidence values . Therefore, 

(17) 

Consistent with our previous assumptions, we assume that the distribution of the 

fields h+ = (h~l'" h~"+l) is jointly Gaussian. We can then find the mean and 
covariance matrix for the distribution of h+ by repeating the calculation of section 
(2) in which evidential nodes have been clamped to their evidence values. Once this 
Gaussian has been determined, it can be used in (17) to determine p( E+). Gaussian 
averages of products of sigmoids are calculated by drawing 1000 samples from the 
Gaussian over which we wish to integrate1 . Note that if there are evidential nodes 

lIn one and two dimensions (n = 0, 1), or n = 1, we use Gaussian Quadrature. 
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Figure 3: All weights are set to uniformly from 0 to 50. Biases are set to -0.5 of 
the summed parental weights plus a uniform random number from -2.5 to 2.5 . The 
root node is set to be 1 with probability 0.5. This has the effect of making all the 
nodes in the exact network roughly 0.5 in mean, with non-negligible correlations 
between parental nodes. 160 simulations were made. 

in different layers, we require the correlations between their fields h to evaluate (17) . 
Such 'inter-layer' correlations were not required in section (2) , and to be able to use 
the same calculational scheme we simply neglect them. (We leave a study of the 
effects of this assumption for future work.) The average in (17) then factors into 
groups, where each group contains evidential terms in a particular layer. 

The conditional marginal for node i is obtained from repeating the above procedure 
in which the desired marginal node is clamped to its opposite value, and then using 
these results in (13). The above procedure is repeated for each conditional marginal 
that we are interested in. Although this may seem computationally expensive, the 
marginal for each node is computed quickly, since the equations are solved by one 
forward propagation sweep only. 

Error uoing Gauosian Field, Diago".1 covarIanee Em:>< uoing Gau"ian Field. Non Diagonal """ariance 

(a) Mean error = 0.1534 (b) Mean error = 0.0931 (c) Mean error = 0.0865 

Figure 4: Estimating the conditional marginal of the top node being in state 1, 
given that the four bottom nodes are in state 1. Weights were drawn from a zero 
mean Gaussian with variance 5, with biases set to -0.5 the summed parental weights 
plus a uniform random number from -2.5 to 2.5 . Results of 160 simulations. 

3.1 Results for conditional marginals 

We used the same structure as in the previous experiments, as shown in fig(I). We 
are interested here in calculating the probability that the top node is in state 1, 
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given that the four bottom nodes are in state 1. Weights were chosen from a zero 
mean Gaussian with variance 5. Biases were set to negative half of the summed 
parent weights, plus a uniform random value from -2.5 to 2.5. Correlation effects 
in these networks are not as strong as in the experiments in section (2.2), although 
the improvement of the G F theory over the variational theory seen in fig ( 4) remains 
clear. The improvement from the off diagonal terms in R is minimal. 

4 Conclusion 

Despite their appropriateness for learning, variational methods may not be equally 
suited to inference, making more tailored methods attractive. We have considered 
an approximation procedure that is based on assuming that the distribution of the 
weighted input to a node is approximately Gaussian. Correlation effects between 
parents of a node were taken into account to improve the Gaussian theory, although 
in our examples this gave only relatively modest improvements. 

The variational mean field theory performs poorly in networks with strong cor
relation effects between nodes. On the other hand, one may conjecture that the 
Gaussian Field approach will not generally perform catastrophically worse than the 
factorised variational mean field theory. One advantage of the variational theory 
is the presence of an objective function against which competing solutions can be 
compared. However, finding an optimum solution for the mean parameters mj from 
this function is numerically complex. Since the Gaussian Field theory is extremely 
fast to solve, an interesting compromise might be to prime the variational solution 
with the results from the Gaussian Field theory. 
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