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Model Predictive Control (MPC), a control algorithm which uses 
an optimizer to solve for the optimal control moves over a future 
time horizon based upon a model of the process, has become a stan­
dard control technique in the process industries over the past two 
decades. In most industrial applications, a linear dynamic model 
developed using empirical data is used even though the process it­
self is often nonlinear. Linear models have been used because of the 
difficulty in developing a generic nonlinear model from empirical 
data and the computational expense often involved in using non­
linear models. In this paper, we present a generic neural network 
based technique for developing nonlinear dynamic models from em­
pirical data and show that these models can be efficiently used in 
a model predictive control framework. This nonlinear MPC based 
approach has been successfully implemented in a number of indus­
trial applications in the refining, petrochemical, paper and food 
industries. Performance of the controller on a nonlinear industrial 
process, a polyethylene reactor, is presented. 

1 Introduction 

Model predictive control has become the standard technique for supervisory control 
in the process industries with over 2,000 applications in the refining, petrochemicals, 
chemicals, pulp and paper, and food processing industries [1]. Model Predictive 
Control was developed in the late 70's and came into wide-spread use, particularly 
in the refining industry, in the 80's. The economic benefit of this approach to control 
has been documented [1,2] . 
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Several factors have contributed to the wide-spread use of MPC in the process 
industries: 

1. Multivariate Control: Industrial processes are typically coupled multiple­
input multiple-output (MIMO) systems. MIMO control can be imple­
mented using MPC. 

2. Constraints: Constraints on the inputs and outputs of a process due to 
safety considerations are common in the process industries. These con­
straints can be integrated into the control calculation using MPC. 

3. Sampling Period: Unlike systems in other industries such as automotive or 
aerospace, the open-loop settling times for many processes is on the order 
of hours rather than milliseconds. This slow settling time translates to 
sampling periods on the order of minutes. Because the sampling period is 
sufficiently long, the complex optimization calculations that are required to 
implement MPC can be solved at each sampling period. 

4. Commercial Tools: Commercial tools that facilitate model development and 
controller implementation have allowed proliferation of MPC in the process 
industries. 

U nti! recently, industrial applications of MPC have relied upon linear dynamic 
models even though most processes are nonlinear. MPC based upon linear models 
is acceptable when the process operates at a single setpoint and the primary use of 
the controller is the rejection of disturbances. However, many chemical processes, 
including polymer reactors, do not operate at a single setpoint. These processes 
are often required to operate at different set points depending upon the grade of the 
product that is to be produced. Because these processes operate over the nonlinear 
range of the system, linear MPC often results in poor performance. To properly 
control these processes, a nonlinear model is needed in the MPC algorithm. 

This need for nonlinear models in MPC is well recognized. A number of researchers 
and commercial companies have developed both simulation and industrial appli­
cations using a variety of different technologies including both first principles and 
empirical approaches such as neural networks [3,4]. Although a variety of different 
models have been developed, they have not been practical for wide scale industrial 
application. On one hand, nonlinear models built using first principle techniques 
are expensive to develop and are specific to a process. Conversely, many empirically 
based nonlinear models are not appropriate for wide scale use because they require 
costly plant tests in multiple operating regions or because they are too computa­
tionally expensive to use in a real-time environment. 

This paper presents a nonlinear model that has been developed for wide scale indus­
trial use. It is an empirical model based upon a neural network which is developed 
using plant test data from a single operating region and historical data from all 
regions. This is in contrast to the usual approach of using plant test data from 
multiple regions. This model has been used on over 50 industrial applications and 
was recognized in a recent survey paper on nonlinear MPC as the most widely used 
nonlinear MPC controller in the process industries[l]. 



Neural Network Based Model Predictive Control 1031 

After providing a brief overview of model predictive control in the next section, 
we present details on the formulation of the nonlinear model. After describing the 
model, an industrial application is presented that validates the usefulness of the 
nonlinear model in an MPC algorithm. 

2 Model Predictive Control 

Model predictive control is based upon solving an optimization problem for the 
control actions at each sampling interval. Using MPC, an optimizer computes 
future control actions that minimize the difference between a model of the process 
and desired performance over a time horizon (typically the time horizon is greater 
than the open-loop settling time of the process). For example, given a linear model 
of process, 

(1) 

where u(t) represents the input to the process, the optimizer may be used to mini­
mize an objective function at time t, 

T 

J = 2)(Yt+i - Yt+i)2 + (Ut+i - Ut+i_l)2) (2) 
i=l 

where Yt is the desired set point for the output and T is the length of the time 
horizon. In addition to minimizing an objective function, the optimizer is used to 
observe a set of constraints. For example, it is common to place upper and lower 
bounds on the inputs as well as bounds on the rate of change of the input, 

U upper 2:: Ut+i 2:: Ul ower V 1:::; i :::; T 

AUupper 2:: Ut+i - Ut+i-l 2:: AUlower V 1:::; i :::; T 

(3) 

(4) 

where Uupper and Ulower are the upper and lower input bounds while AUupper and 
AUlower are the upper and lower rate of change bounds. After the trajectory of 
future control actions is computed, only the first value in the trajectory is sent as a 
setpoint to the actuators. The optimization calculation is re-run at each sampling 
interval using a model which has been updated using feedback. 

The form of the model, the objective function, the constraints and the type of 
optimizer have been active areas of research over the past two decades. A number 
of excellent survey papers on MPC cover these topics [1,2,4]. As discussed above, 
we have selected a MIMO nonlinear model which is presented in the next section. 
Although the objective function given above contains two terms (desired output 
and input move suppression), the objective function used in our implementation 
contains thirteen separate terms. (The details of the objective function are beyond 
the scope of this paper.) Our implementation uses the constraints given above in 
(3) and (4). Because we use nonlinear models, a nonlinear programming technique 
must be used to solve the optimization problem. We use LS-GRG which is a reduced 
gradient solver [5]. 
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3 A Generic and Parsimonious Nonlinear Model 

For a nonlinear model to achieve wide-spread industrial use, the model must be 
parsimonious so that it can be efficiently used in an optimization problem. Fur­
thermore, it must be developed from limited process data. As discussed below, the 
nonlinear model we use is composed of a combination of a nonlinear steady state 
model and a linear dynamic model which can be derived from available data. The 
method of combining the models results in a parsimonious nonlinear model. 

3.1 Process data and component models 

The quantity and quality of available data ultimately determines the structure of 
an empirical model. In developing our models, the available data dictated the type 
of model that could be created. In the process industries, two types of data are 
available: 

1. Historical data: The values of the inputs and outputs of most processes 
are saved at regular intervals to a data base. Furthermore, most process­
ing companies retain historical data associated with their plant for several 
years. 

2. Plant tests: Open-loop testing is a well accepted practice for determining 
the process dynamics for implementation ofMPC. However, open-loop test­
ing in multiple operating regions is not well accepted and is impractical in 
most cases even if it were accepted. 

Most practitioners of MPC models have used plant test data and ignored historical 
data. Practitioners have ignored the historical data in the past because it was 
difficult to extract and preprocess the data, and build models. Historical data 
was also viewed as not useful because it was collected in closed-loop and therefore 
process dynamics could not be extracted in many cases. Using only the plant test 
data, the practitioner is limited to linear dynamic models. 

We chose to use the historical data because it can be used to create nonlinear 
steady state models of processes that operate at multiple setpoints. Combining the 
nonlinear steady state model with linear dynamic models from the plant test data 
provides a generic approach to developing nonlinear models. 

To easily facilitate the development of nonlinear models, a suite of tools has been 
developed for data extraction and preprocessing as well as model training. The 
nonlinear steady state models, 

Yss = NNss(u) (5) 

are implemented by a feedforward neural network and trained using variants of 
the backpropagation algorithm [6]. The developer has a great deal of flexibility in 
determining the architecture of the network including the ability to select which 
inputs affect which outputs. Finally, an algorithm for specifying bounds on the 
gain (Jacobian) of the model has recently been implemented [7]. 

Because of limited plant test data, the dynamic models are restricted to second 
order models with input time delay, 

Yt = -alYt-l - a2Yt-2 + b1 Ut-d-l + b2Ut-d-2 (6) 
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The parameters of (6) are identified by minimizing the squared error between the 
model and the plant test data. To prevent a biased estimate of the parameters, 
the identification problem is solved using an optimizer because of the correlation in 
the model inputs [8]. Tools for selecting the identification regions and viewing the 
results are provided. 

3.2 Combining the nonlinear steady state and dynamic models 

A variety of techniques exist for combining nonlinear steady state and linear dy­
namic models. The dynamic models can be used to either preprocess the inputs 
or postprocess the outputs of the steady state model. These models, referred to as 
Hammerstein and Weiner models respectively [8], contain a large number of parame­
ters and are computationally expensive in an optimization problem when the model 
has many inputs and outputs. These models, when based upon neural networks, 
also extrapolate poorly. 

Gain scheduling is often used to combine nonlinear steady state models and linear 
dynamic models. Using a neural network steady state model, the gain at the current 
operating point, Ui, 

ayss 
gi = au I U=Ui (7) 

is used to update the gain of the linear dynamic model of (6), 

(8) 

where 

= 
b 1 + al + a2 

19i b1 + b2 
(9) 

b 1 + al + a2 
2gi b1 + b2 

(10) 

The difference equation is linearized about the point Ui and Yi = N N(Ui), thus, 
~Y = Y - Yi and ~u = U - Ui· To simplify the equations above, a single-input single­
output (8180) system is used. Gain scheduling results in a parsimonious model that 
is efficient to use in the MPC optimization problem, however, because this model 
does not incorporate information about the gain over the entire trajectory, its use 
leads to suboptimal performance in the MPC algorithm. 

Our nonlinear model approach remedies this problem. By solving a steady state 
optimization problem whenever a setpoint change is made, it is possible to compute 
the final steady state values of the inputs, U f. Given the final steady state input 
values, the gain associated with the final steady state can be computed. For a 8180 
system, this gain is given by 

(11) 

Using the initial and final gain associated with a setpoint change, the gain structure 
over the entire trajectory can be approximated. This two point gain scheduling 
overcomes the limitations of regular gain scheduling in MPC algorithms. 
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Combining the initial and final gain with the linear dynamic model, a quadratic 
difference equation is derived for the overall nonlinear model, 

where 

= 

bi (1 + al + a2)(9f - 9i) 
(b1 + b2)(uf - ud 

b2 (1 + al + a2)(9f - 9d 
(b1 + b2)(uf - ud 

(13) 

(14) 

and VI and V2 are given by (9) and (10). Use of the gain at the final steady state 
introduces the last two terms of (12). This model allows the incorporation of gain 
information over the entire trajectory in the MPC algorithm. The gain at of (12) at 
Ui is 9i while at uf it is 9f. Between the two points, the gain is a linear combination 
of 9i and 9 f. For processes with large gain changes, such as polymer reactors, this 
can lead to dramatic improvements in MPC controller performance. 

An additional benefit of using the model of (12) is that we allow the user to bound 
the initial and final gain and thus control the amount of nonlinearity used in the 
model. For practitioners who are use to implementing MPC with linear models, 
using gain bounds allows them to transition from linear to nonlinear models. This 
ability to control the amount of nonlinearity used in the model has been important 
for acceptance of this new model in many applications. Finally, bounding the gains 
can be used to guarantee extrapolation performance of the model. 

The nonlinear model of (12) fits the criteria needed in order to allow wide spread 
use of nonlinear models for MPC. The model is based upon readily available data 
and has a parsimonious representation allowing models with many inputs and out­
puts to be efficiently used in the optimizer. Furthermore, it addresses the primary 
nonlinearity found in processes, that being the significant change in gain over the 
operating region. 

4 Polymer Application 

The nonlinear model described above has been used in a wide-variety of industrial 
applications including Kamyr digesters (pUlp and paper), milk evaporators and 
dryers (food processing), toluene diamine purification (chemicals), polyethylene and 
polypropylene reactors (polymers) and a fluid catalytic cracking unit (refining). 
Highlights of one such application are given below. 

A MPC controller that uses the model described above has been applied to a Gas 
Phase High Density Polyethylene reactor at Chevron Chemical Co. in Cedar Bayou, 
Texas [9]. The process produces homopolymer and copolymer grades over a wide 
range of melt indices. It's average production rate per year is 230,000 tons. 

Optimal control of the process is difficult to achieve because the reactor is a highly 
coupled nonlinear MIMO system (7 inputs and 5 outputs). For example, a number 
of input-output pairs exhibit gains that varying by a factor of 10 or more over the 
operating region. In addition, grade changes are made every few days. During these 
transitions nonprime polymer is produced. Prior to commissioning these controllers, 
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these transitions took several hours to complete. Linear and gain scheduling based 
controller have been tried on similar reactors and have delivered limited success. 

The nonlinear model was constructed using only historical data. The nonlinear 
steady state model was trained upon historical data from a two year period. This 
data contained examples of all the products produced by the reactor. Accurate dy­
namic models were derived both from historical data and knowledge of the process, 
thus, no step tests were conducted on the process. 

Excellent performance of this controller has been reported [9]. A two-fold decrease 
in the variance of the primary quality variable (melt index) has been achieved. In 
addition, the average transition time has been decreased by 50%. Unscheduled 
shutdowns which occurred previously have been eliminated. Finally, the controller, 
which has been on-line for two years, has gained high operator acceptance. 

5 Conclusion 

A generic and parsimonious nonlinear model which can be used in an MPC algo­
rithm has been presented. The model is created by combining a nonlinear steady 
state model with a linear dynamic models. They are combined using a two-point 
gain scheduling technique. This nonlinear model has been used for control of a 
nonlinear MIMO polyethylene reactor at Chevron Chemical Co. The controller has 
also been used in 50 other applications in the refining, chemicals, food processing 
and pulp and paper industries. 
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