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In many classification tasks, recognition accuracy is low because input 
patterns are corrupted by noise or are spatially or temporally 
overlapping. We propose an approach to overcoming these limitations 
based on a model of human selective attention. The model, an early 
selection filter guided by top-down attentional control, entertains each 
candidate output class in sequence and adjusts attentional gain 
coefficients in order to produce a strong response for that class. The 
chosen class is then the one that obtains the strongest response with the 
least modulation of attention. We present simulation results on 
classification of corrupted and superimposed handwritten digit patterns, 
showing a significant improvement in recognition rates. The algorithm 
has also been applied in the domain of speech recognition, with 
comparable results. 

1 Introduction 

In many classification tasks, recognition accuracy is low because input patterns are 
corrupted by noise or are spatially or temporally overlapping. Approaches have been 
proposed to make classifiers more robust to such perturbations, e.g., by requiring 
classifiers to have low input-to-output mapping sensitivity [1]. We propose an approach 
that is based on human selective attention. People use selective attention to focus on 
critical features of a stimulus and to suppress irrelevant features. It seems natural to 
incorporate a selective-attention mechanism into pattern recognition systems for noisy 
real world applications. 

Psychologists have for many years studied the mechanisms of selective attention (e.g., 
[2]-[4]). However, controversy still exists among competing theories, and only a few 
models are sufficiently well defmed to apply to engineering pattern recognition problems. 

Fukushima [5] has incorporated selective attention and attention-switching algorithms 
into his Neocognitron model, and has demonstrated good recognition performance on 
superimposed digits. However, the Neocognitron model has many unknown parameters 
which must be determined heuristically, and its performance is sensitive to the parameter 
values. Also, its computational requirements are prohibitively expensive for many real­
time applications. Rao [6] has also recently introduced a selective attention model based 
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on Kalman filters and demonstrated classifications of superimposed patterns. However, 
his model is based on linear systems, and a nonlinear extension is not straightforward. 
There being no definitive approach to incorporating selective attention into pattern 
recognition, we propose a novel approach and show it can improve recognition accuracy. 

2 Psychological Views of Selective Attention 

The modern study of selective attention began with Broadbent [7]. Broadbent presented 
two auditory channels to subjects, one to each ear, and asked subjects to shadow one 
channel. He observed that although subjects could not recall most of what took place in 
the unshadowed channel, they could often recall the last few seconds of input on that 
channel. Therefore, he suggested that the brain briefly stores incoming stimuli but the 
stimulus information fades and is neither admitted to the conscious mind nor is encoded in 
a way that would permit later recollection, unless attention is directed toward it. This view 
is known as an early filtering or early selection model. Treisman [8] proposed a 
modification to this view in which the filter merely attenuates the input rather than 
absolutely preventing further analysis. Although late-selection and hybrid views of 
attention have been proposed, it is clear that early selection plays a significant role in 
human information processing [3]. 

The question about where attention acts in the stream of processing is independent of 
another important issue: what factors drive attention to select one ear or one location 
instead of another. Attention may be directed based on low-level stimulus features, such 
as the amplitude of a sound or the color of a visual stimulus. This type of attentional 
control is often called bottom up. Attention may also be directed based on expectations 
and object knowledge, e.g., to a location where critical task-relevant information is 
expected. This type of attentional control is often called top down. 

3 A Multilayer Perceptron Architecture for Selective Attention 

We borrow the notion of an early selection filter with top-down control and integrate it 
into a multilayer perceptron (MLP) classifier, as depicted in Figure 1. The dotted box is a 
standard MLP classifier, and an attention layer with one-to-one connectivity is added in 
front of the input layer. Although we have depicted an MLP with a single hidden layer, 
our approach is applicable to general MLP architectures. The kth element of the input 
vector, denoted xk, is gated to the kth input of the MLP by an attention gain or filtering 
coefficient ak. Previously, the first author has shown a benefit of treating the ak's like 
ordinary adaptive parameters during training [9]-[12]. 

In the present work, we fix the attention gains at 1 during training, causing the architecture 
to behave as an ordinary MLP. However, we allow the gains to be adjusted during 
classification of test patterns. Our basic conjecture is that recognition accuracy may be 
improved if attention can suppress noise along irrelevant dimensions and enhance a weak 
signal along relevant dimensions. "Relevant" and "irrelevant" are determined by top­
down control of attention. Essentially, we use knowledge in the trained MLP to determine 
which input dimensions are critical for classifying a test pattern. To be concrete, consider 
an MLP trained to classify handwritten digits. When a test pattern is presented, we can 
adjust the attentional gains via gradient descent so as to make the input as good an example 
of the class "0" as possible. We do this for each of the different output classes, "0" through 
"9", and choose the class for which the strongest response is obtained with the smallest 
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attentional modulation (the exact quantitative rule is presented below). The conjecture is 
that if the net can achieve a strong response for a class by making a small attentional 
modulation, that class is more likely to be correct than whichever class would have been 
selected without applying selective attention . 
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Figure 1: MLP architecture for selective attention 

The process of adjusting the attentional gains to achieve a strong response from a 
particular class-<:all it the attention class-proceeds as follows. First, a target output 

vector tS = [1'1 1'2· ··t'M f is defmed. For bipolar binary output representations, t,S = 1 is for 

the attention class and -1 for the others. Second, the attention gain ak's are set to I. Third, 

the attention gain ak's are adapted to minimize error E S == ~ L (t,S - y,)2 with the given , 
input x = [XI X2··· XN f and pre-trained and frozen synaptic weights W. The update rule is 
based on a gradient-descent algorithm with error back-propagation. At the (n+ J)'th 

iterative epoch, the attention gain a k is updated as 

(Ia) 

(lb) 

where E denotes the attention output error, ojl) thej'th attribute of the back-propagated 

error at the first hidden-layer, and WJ~) the synaptic weight between the input xk and the 

j'th neuron at the first hidden layer. Finally, " is a step size. The attention gains are 
thresholded to lie in [0, 1]. The application of selective attention to a test example is 
summarized as follows: 

Step 1: Apply a test input pattern to the trained MLP and compute output values. 
Step 2: For each of the classes with top m activation values, 

(I) Initialize all attention gain ak' s to 1 and set the target vector tS. 

(2) Apply the test pattern and attention gains to network and compute output. 
(3) Apply the selective attention algorithm in Eqs.( 1) to adapt the attention gains. 
(4) Repeat steps (2) and (3) until the attention process converges. 
(5) Compute an attention measure M on the asymptotic network state. 
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Step 3: Select the class with a minimum attention measure M as the recognized class. 

The attention measure is defined as 

(2a) 

D j = :f(Xk -xk )2/2N 

2 2 
= :fxk(l-ak) /2N 

(2b) 

Eo = 4[/i - y;(i)]2/2M , (2c) 

where D/ is the square of Euclidean distance between two input patterns before and after 
the application of selective attention and Eo is the output error after the application of 
selective attention. Here, D/ and Eo are normalized with the number of input pixels and 
number of output classes, respectively. The superscript s for attention classes is omitted 
for simplicity. To make the measure M a dimensionless quantity, one may normalize the 

D/ and Eo with the input energy (~kX~ ) and the training output error, respectively. 

However, it does not affect the selection process in Step 3. 

One can think of the attended input i as the minimal deformation of the test input needed 
to trigger the attended class, and therefore the Euclidean distance between x and i is a 
good measure for the classification confidence. In fact, D/ is basically the same quantity 
minimized by Rao [6]. However, the MLP classifier in our model is capable of nonlinear 
mapping between the input and output patterns. A nearest-neighbor classifier, with the 
training data as examples, could also be used to find the minimum-distance class. Our 
model with the MLP classifier computes a similar function without the large memory and 
computational requirements. 

The proposed selective attention algorithm was tested on recognition of noisy numeral 
patterns. The numeral database consists of samples of the handwritten digits (0 through 9) 
collected from 48 people, for a total of 480 samples. Each digit is encoded as a 16x16 
binary pixel array. Roughly 16% of the pixels are black and coded as 1; white pixels are 
coded as O. Four experiments were conducted with different training sets of 280 training 
patterns each. A one hidden-layer MLP was trained by back propagation. The numbers of 
input, hidden, and output neurons were 256, 30, and to, respectively. Three noisy test 
patterns were generated from each training pattern by randomly flipping each pixel value 
with a probability Pt, and the 840 test patterns were presented to the network for 
classification. 

In Figure 2, the false recognition rate is plotted as a function of the number of candidates 
considered for the attentional manipulation, m. (Note that the run time of the algorithm is 
proportional to m, but that increasing m does not imply a more lax classification criterion, 
or additional external knowledge playing into the classification.) Results are shown for 
three different pixel inversion probabilities, Pt =0.05, 0.1, and 0.15. Considering the 
average 16% of black pixels in the data, the noisy input patterns with Pt= 0.15 correspond 
to a SNR of approximately 0 dB. For each condition in the figure, the false recognition 
rates for the four different training sets are marked with an '0', and the means are 
connected by the solid curve. 
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A standard MLP classifier corresponds 
to m = I (i.e., only the most active 
output of the MLP is considered as a 
candidate response). The false 
recognition rate is clearly lower when 
the attentional manipulation is used to 
select a response from the MLP (m > I). 
It appears that performance does not 
improve further by considering more 
than the top three candidates. 

4 Attention Switching for 
Superimposed Patterns 

Suppose that we superimpose the 
binary input patterns for two different 
handwritten digits using the logical OR 
operator (the pixels corresponding to 
the black ink have logical value 1). 
Can we use attention to recognize the 
two patterns in sequence? This is an 
extreme case of a situation that is 
common in visual pattern 
recognition-where two patterns are 
spatially overlapping. 

We explore the following algorithm. 
First, one pattern is recognized with the 
selective attention process used in 
Section 3. Second, attention is 
switched from the recognized pattern to 
the remaining pixels in the image. 
Switching is accomplished by 
removing attention from the pixels of 
the recognized pattern: the attentional 
gain of an input is clamped to 0 
following switching if and only if its 
value after the first-stage selective 
attention process was 1 (Le., that input 
was attended during the recognition of 
the first pattern); all other gains are set 
to 1. Third, the recognition process 
with selective attention is performed 
again to recognize the second pattern. 

The proposed selective attention and 
attention switching algorithm was 
tested for recognition of 2 
superimposed numeral data. Again, 
four experiments were conducted with 
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Figure 2: False recognition rates for noisy 
patterns as a function of the number of top 
candidates. Each binary pixel of training 
patterns is randomly inverted with a 
probability Pr. 
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different training sets. For each experiment, 40 patterns were selected from 280 training 
patterns, and 720 test patterns were generated by superimposing pairs of patterns from 
different output classes. The test patterns were still binary. 
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Figure 3: Examples of Selective Attention and Attention Switching 

Figure 3 shows six examples of the selective attention and attention switching algorithm in 
action, each consisting of four panels in a horizontal sequence. The six examples were 
fonned by superimposing instances of the following digit pairs: (6,3), (9,0), (6,4), (9,3), 
(2,6), and (5,2). The fIrst panel for each example shows the superimposed pattern. The 
second panel shows the attended input i for the fIrst round classifIcation; because this 
input has continuous values, we have thresholded the values at 0.5 to facilitate viewing in 
the fIgure. The third panel shows the masking pattern for attention switching, generated 
by thresholding the input pattern at 1.0. The fourth panel sho~s the residual input pattern 
for the second round classifIcation. The attended input x has analog values, but 
thresholded by 0.5 to be shown in the second rectangles. Figure 3 shows that attention 
switching is done effectively, and the remaining input patterns to the second classifIer are 
quite visible. 

We compared perfonnance for three different methods. First, we simply selected the two 
MLP outputs with highest activity; this method utilizes neither selective attention. Second, 
we perfonned attention switching but did not apply selective attention (i.e., m=I). Third, 
we perfonned both attention switching and selective attention (with m=3). Table I 
summarizes the recognition rates for the fITst and the second patterns read out of the MLP 
for the three methods. As hypothesized, attention switching increases the recognition rate 
for the second pattern, and selective attention increases the recognition rate for both the 
fITSt and the second pattern. 

Table I: Recognition Rates (%) of Two Superimposed Numeral Patterns 

No selective attention or switching 
Switching only 
Switching & selective attention 

First Pattern 

91. 3 
91. 3 
95.9 

Second Pattern 

62.7 
75.4 
77.4 
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5 Conclusion 

In this paper, we demonstrated a selective-attention algorithm for noisy and superimposed 
patterns that obtains improved recognition rates. We also proposed a simple attention 
switching algorithm that utilizes the selective-attention framework to further improve 
performance on superimposed patterns. The algorithms are simple and easily 
implemented in feedforward MLPs. Although our experiments are preliminary, they 
suggest that attention-based algorithms will be useful for extracting and recognizing 
multiple patterns in a complex background. We have conducted further simulation studies 
supporting this conjecture in the domain of speech recognition, which we will integrate 
into this presentation if it is accepted at NIPS. 
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