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Abstract 

Agents acting in the real world are confronted with the problem of 
making good decisions with limited knowledge of the environment. 
Partially observable Markov decision processes (POMDPs) model 
decision problems in which an agent tries to maximize its reward in the 
face of limited sensor feedback. Recent work has shown empirically that 
a reinforcement learning (RL) algorithm called Sarsa(A) can efficiently 
find optimal memoryless policies, which map current observations to 
actions, for POMDP problems (Loch and Singh 1998). The Sarsa(A) 
algorithm uses a form of short-term memory called an eligibility trace, 
which distributes temporally delayed rewards to observation-action 
pairs which lead up to the reward. This paper explores the effect of 
eligibility traces on the ability of the Sarsa(A) algorithm to find optimal 
memoryless policies. A variant of Sarsa(A) called k-step truncated 
Sarsa(A) is applied to four test problems taken from the recent work of 
Littman, Littman, Cassandra and Kaelbling, Parr and Russell, and 
Chrisman. The empirical results show that eligibility traces can be 
significantly truncated without affecting the ability of Sarsa(A) to find 
optimal memoryless policies for POMDPs. 

1 Introduction 

Agents which operate in the real world, such as mobile robots, must use sensors which at 
best give only partial information about the state of the environment. Information about 
the robot's surroundings is necessarily incomplete due to noisy and/or imperfect sensors, 
occluded objects, and the inability of the robot to know precisely where it is. Such agent­
environment systems can be modeled as partially observable Markov decision processes 
or POMDPs (Sondik, 1978). 

A variety of algorithms have been developed for solving POMDPs (Lovejoy, 1991). 
However most of these techniques do not scale well to problems involving more than a 
few dozen states due to the computational complexity of the solution methods 
(Cassandra, 1994; Littman 1994). Therefore, finding efficient reinforcement learning 
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methods for solving POMDPs is of great practical interest to the Artificial Intelligence 
and engineering fields. 

Recent work has shown empirically that the Sarsa(A) algorithm can efficiently find the 
best deterministic memoryless policy for several POMDPs problems from the recent 
literature (Loch and Singh 1998). The empirical results from Loch and Singh (1998) 
suggest that eligibility traces are necessary for finding the best or optimal memoryless 
policy. For this reason, a variant of Sarsa(A) called k-step truncated Sarsa(A) is formulated 
to explore the effect of eligibility traces on the ability of Sarsa( A) to find the best 
memory less policy. 

The main contribution of this paper is to show empirically that a variant of Sarsa(A) 
using truncated eligibility traces can find the optimal memory less policy for several 
POMDP problems from the literature. Specifically we show that the k-step truncated 
Sarsa(A) method can find the optimal memoryless policy for the four POMDP problems 
tested when k :S 2. 

2 Sarsa(J..) and POMDPs 

An environment is defined by a finite set of states S, the agent can choose from a finite set 
of actions A, and the agent's sensors provide it observations from a finite set X. On 
executing action a £ A in state s £ S the agent receives expected reward rsa and the 
environment transitions to a state s' £ S with probability pass" The probability of the 
agent observing x £ X given that the state is s is O(xls). 

A straightforward way to extend RL algorithms to POMDPs is to learn Q-value functions 
of observation-action pairs, i.e. to simply treat the agents observations as states. Below 
we describe the standard Sarsa(A) algorithm applied to POMDPs. At time step t the Q­
value function is denoted Qt ; the eligibility trace function is denoted 'YIt ; and the reward 
received is denoted rt . On experiencing transition <xt. at. rb Xt+l> the following updates 
are performed in order: 

'YIt(x, a) = YA 'YIt-l(X, a) ; for all X"# Xt and a"# at 

where bt = rt + Y Qt<xt+h at+l) - Qt(Xb aJ and a is the step-size (learning rate). The 
eligibility traces are initialized to zero, and in episodic tasks they are reinitiaHzed to zero 
after every episode. The greedy policy at time step t assigns to each observation x the 
action a = argmaxb Qt<x, b). 

2.1 Sarsa(A) Using Truncated Eligibility Traces 

Sarsa(A) with truncated eligibility traces uses a parameter k which sets the eligibility 
trace for an observation-action pair to zero if that observation-action pair was not visited 
within the last k-I time steps. Thus I-step truncated Sarsa(A) is equivalent to Sarsa(O) 
and 2-step truncated Sarsa(A) updates the Q-values of the current observation-action pair 
and the immediately preceding observation-action pair. 
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3 Empirical Results 

The truncated Sarsa(/..) algorithm was applied in an identical manner to four POMDP 
problems taken from the recent literature. Complete descriptions of the states, actions, 
observations, and rewards for each problem are provided in Loch and Singh (1998). Here 
we describe the aspects of the empirical results common to all four problems. At each 
step. the agent selected a random action with a probability equal to the exploration rate 
parameter and selected a greedy action otherwise. An initial exploration rate of 35% was 
used, decreasing linearly with each action (step) until the 350000th action from there 
onward the exploration rate remain fixed at 0%. Q-values were initialized to O. Both the 
step-size a and the /.. values are held constant in each experiment. A discount factor y of 
0.95 and a /.. value of 1.0 were used for all four problems. 

3.1 Sutton's Grid World 

Sutton's grid world (Littman 1994) is an agent-environment system with 46 states, 30 
observations, and 4 actions. State transitions and observations are deterministic. 

The I-step truncated eligibility trace, equivalent to Sarsa(O), was able to find a policy 
which could only reach the goal from start states within 7 steps of the goal state as shown 
in Figure 1. The optimal memoryless policy yielding 416 total steps to the goal state 
was found by the 2-step, 4-step and 8-step truncated eligibility trace methods shown in 
Figure 1. 
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Figure 1: Sutton's Grid World (from Littman, 1994). Total steps to goal performance as 
a function of the number oflearning steps for 1,2,4, and 8-step eligibility traces. 
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3.2 Chrisman's Shuttle Problem 

Chrisman's shuttle problem is an agent-environment system with 8 states, 5 
observations, and 3 actions. State transitions and observations are stochastic. 

The I-step truncated eligibility trace, equivalent to Sarsa(O), was unable to find a policy 
which could could reach the goal state (Figure 2). The optimal memoryless policy 
yielding an average reward per step of 1.02 was found by the 2-step, 4-step, and 8-step 
truncated eligibility trace methods shown in Figure 2. 
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Figure 2: Chrisman's shuttle problem. Average reward per step performance as a function 
of the number ofleaming steps for 1,2,4, and 8-step eligibility traces. 

3.3 Littman, Cassandra, and Kaelbling's 89 State Office World 

Littman et al.' s 89 state office world (Littman (995) is an agent-environment system 
with 89 states, 17 observations, and 5 actions. State transitions and observations are 
stochastic. 

The I-step truncated eligibility trace, equivalent to Sarsa(O), was able to find a policy 
which could reach the goal state in only 51% of the 251 trials (Figure 3). The 2-step, 4-
step and 8-step truncated eligibility trace methods converged to the best memoryless 
policy found by Loch & Singh (1998) yielding a 77% success rate in reaching the goal 
state (Figure 3). 
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Figure 3: Littman et al.'s 89 state office world, Percent successful trials in reaching goal 
performance as a function of the number oflearning steps for 1,2,4, and 8-step eligibility 
traces_ 

3.4 Parr & Russell's Grid World 

Parr and Russell's grid world (parr and Russell 1995) is an agent-environment system 
with 11 states, 6 observations, and 4 actions, State transitions are stochastic while 
observations are deterministic, 

The optimal memoryless policy yielding an average reward per step of 0,024 was found 
by both the I-step and 2-step truncated eligibility trace methods (Figure 4), Policies 
found by the 4-step and 8-step methods were not optimal, This result can be attributed to 
the sharp eligibility trace cutoff as this effect was not observed with smoothly decaying 
eligibility traces. 
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Figure 4: Parr & Russell's Grid World. Average reward per step performance as a 
function of the number oflearning steps for 1, 2, 4, and 8-step eligibility traces. 

3.5 Discussion 

In all the empirical results presented above, we have shown that the k-step truncated 
Sarsa(i-.) algorithm was able to find the best or the optimal deterministic memoryless 
policy when k=2. 

This result is surprising since it was expected that the length of the eligibility trace 
required to find a good or optimal policy would vary widely depending on problem 
specific factors such as landmark (unique observation) spacing and the delay between 
critical decisions and rewards. Several additional POMDP problems were formulated in 
an attempt to create a POMDP which would require a k value greater than 2 to find the 
optimal policy. However, for all trial POMDPs tested the optimal memoryless policy 
could be found with k ~ 2. 

4 Conclusions and Future Work 

The ability of the Sarsa(i-.) algorithm and the k-step truncated Sarsa(i-.) algorithm to find 
optimal deterministic memoryless policies for a class of POMDP problems is important 
for several reasons. For POMDPs with good memoryless policies the Sarsa(i-.) algorithm 
provides an efficient method for finding the best policy in that space. 

If the performance of the memoryless policy is unsatisfactory, the observation and action 
spaces of the agent can be modified so as to produce an agent with a good memoryless 
policy. The designer of the autonomous system or agent can modifY the observation 
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space of the agent by either adding sensors or making finer distinctions in the current 
sensor values. In addition, the designer can add attributes from past observations into the 
current observation space. The action space can be modified by adding lower-level actions 
and by adding new actions to the space. Thus one method for designing a capable agent 
is to iterate between selecting an observation and action space for the agent, using 
Sarsa(J...) to find the best memory less policy in that space, and repeating until satisfactory 
perfonnance is achieved. 

This suggests a future line of research into how to automate the process of observation 
and action space selection so as to acheive an acceptable performance level. Other avenues 
of research include an exploration into theoretical reasons why Sarsa(J...) and k-step 
truncated Sarsa(J...) are able to solve POMDPs. In addition, further research needs to be 
conducted as to why short (k -::; 2) eligibility traces work well over a wide class of 
POMDPs. 
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