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Abstract 

A directed generative model for binary data using a small number 
of hidden continuous units is investigated. A clipping nonlinear­
ity distinguishes the model from conventional principal components 
analysis. The relationships between the correlations of the underly­
ing continuous Gaussian variables and the binary output variables 
are utilized to learn the appropriate weights of the network. The 
advantages of this approach are illustrated on a translationally in­
variant binary distribution and on handwritten digit images. 

Introduction 

Principal Components Analysis (PCA) is a widely used statistical technique for rep­
resenting data with a large number of variables [1]. It is based upon the assumption 
that although the data is embedded in a high dimensional vector space, most of 
the variability in the data is captured by a much lower climensional manifold. In 
particular for PCA, this manifold is described by a linear hyperplane whose char­
acteristic directions are given by the eigenvectors of the correlation matrix with 
the largest eigenvalues. The success of PCA and closely related techniques such as 
Factor Analysis (FA) and PCA mixtures clearly indicate that much real world data 
exhibit the low dimensional manifold structure assumed by these models [2, 3]. 

However, the linear manifold structure of PCA is not appropriate for data with 
binary valued variables . Binary values commonly occur in data such as computer 
bit streams, black-and-white images, on-off outputs of feature detectors, and elec­
trophysiological spike train data [4]. The Boltzmann machine is a neural network 
model that incorporates hidden binary spin variables, and in principle, it should be 
able to model binary data with arbitrary spin correlations [5]. Unfortunately, the 
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Figure 1: Generative model for N-dimensional binary data using a small number 
p of continuous hidden variables. 

computational time needed for training a Boltzmann machine renders it impractical 
for most applications. 

In these proceedings, we present a model that uses a small number of continuous 
hidden variables rather than hidden binary variables to capture the variability of 
binary valued visible data. The generative model differs from conventional peA 
because it incorporates a clipping nonlinearity. The resulting spin configurations 
have an entropy related to the number of hidden variables used, and the resulting 
states are connected by small numbers of spin flips. The learning algorithm is par­
ticularly simple, and is related to peA by a scalar transformation of the correlation 
matrix. 

Generative Model 

Figure 1 shows a schematic diagram of the generative process. As in peA, the 
model assumes that the data is generated by a small number P of continuous hidden 
variables Yi . Each of the hidden variables are assumed to be drawn independently 
from a normal distribution with unit variance: 

P(Yi) = exp( -yt /2)/~. (1) 

The continuous hidden variables are combined using the feedforward weights Wij , 

and the N binary output units are then calculated using the sign of the feedforward 
acti vations: 

P 

Xi = L WijYj (2) 
j=l 

Si sgn(xi). (3) 

Since binary data is commonly obtained by thresholding, it seems reasonable that 
a proper generative model should incorporate such a clipping nonlinearity. The 
generative process is similar to that of a sigmoidal belief network with continuous 
hidden units at zero temperature. The nonlinearity will alter the relationship be­
tween the correlations of the binary variables and the weight matrix W as described 
below. 

The real-valued Gaussian variables Xi are exactly analogous to the visible variables 
of conventional peA. They lie on a linear hyperplane determined by the span of 
the matrix W, and their correlation matrix is given by: 

cxx = (xxT ) = WWT . (4) 
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Figure 2: Binary spin configurations Si in the vector space of continuous hidden 
variables Yj with P = 2 and N = 3. 

By construction, the correlation matrix CXX has rank P which is much smaller 
than the number of components N. Now consider the binary output variables 
Si = sgn(xd· Their correlations can be calculated from the probability distribution 
of the Gaussian variables Xi: 

where 

(CSS)ij = (SiSj) = J IT dYk P(Xk) sgn(Xi) sgn(Xj) 
k 

(5) 

(6) 

The integrals in Equation 5 can be done analytically, and yield the surprisingly 
simple result: 

(CSS ) .. - _ sin-1 'J (2) [C~.X 1 
'J - 11" JCfix elf . (7) 

Thus, the correlations of the clipped binary variables CSS are related to the corre­
lations of the corresponding Gaussian variables CXX through the nonlinear arcsine 
function. The normalization in the denominator of the arcsine argument reflects the 
fact that the sign function is unchanged by a scale change in the Gaussian variables. 

Although the correlation matrix CSS and the generating correlation matrix cn are 
easily related through Equation 7, they have qualitatively very different properties. 
In general, the correlation matrix CSS will no longer have the low rank structure of 
CXX. As illustrated by the translationally invariant example in the next section, the 
spectrum of CSS may contain a whole continuum of eigenvalues even though cxx 
has only a few nonzero eigenvalues. 

PCA is typically used for dimensionality reduction of real variables; can this model 
be used for compressing the binary outputs Si? Although the output correlations 
CSS no longer display the low rank structure of the generating CXX , a more appropri­
ate measure of data compression is the entropy of the binary output states. Consider 
how many of the 2N possible binary states will be generated by the clipping process. 
The equation Xi = E j WijYj = 0 defines a P - 1 dimensional hyperplane in the 
P-dimensional state space of hidden variables Yj, which are shown as dashed lines 
in Figure 2. These hyperplanes partition the half-space where Si = +1 from the 
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Figure 3: Translationally invariant binary spin distribution with N = 256 units. 
Representative samples from the distribution are illustrated on the left, while the 
eigenvalue spectrum of CSS and CXX are plotted on the right. 

region where Si = -1. Each of the N spin variables will have such a dividing hyper­
plane in this P-dimensional state space, and all of these hyperplanes will generically 
be unique. Thus , the total number of spin configurations Si is determined by the 
number of cells bounded by N dividing hyperplanes in P dimensions. The number 
of such cells is approximately NP for N » P, a well-known result from perceptrons 
[6]. To leading order for large N, the entropy of the binary states generated by this 
process is then given by S = P log N. Thus, the entropy of the spin configurations 
generated by this model is directly proportional to the number of hidden variables 
P . 

How is the topology of the binary spin configurations Si related to the PCA man­
ifold structure of the continuous variables Xi? Each of the generated spin states is 
represented by a polytope cell in the P dimensional vector space of hidden variables. 
Each polytope has at least P + 1 neighboring polytopes which are related to it by a 
single or small number of spin flips. Therefore, although the state space of binary 
spin configurations is discrete, the continuous manifold structure of the underlying 
Gaussian variables in this model is manifested as binary output configurations with 
low entropy that are connected with small Hamming distances . 

Translationally Invariant Example 

In principle, the weights W could be learned by applying maximum likelihood to 
this generative model; however, the resulting learning algorithm involves analyti­
cally intractable multi-dimensional integrals. Alternatively, approximations based 
upon mean field theory or importance sampling could be used to learn the appropri­
ate parameters [7]. However, Equation 7 suggests a simple learning rule that is also 
approximate, but is much more computationally efficient [8]. First, the binary cor­
relation matrix CSS is computed from the data. Then the empirical CSS is mapped 
into the appropriate Gaussian correlation matrix using the nonlinear transforma­
tion: CXX = sin(7l'Css /2). This results in a Gaussian correlation matrix where the 
variances of the individual Xi are fixed at unity. The weights Ware then calculated 
using the conventional PCA algorithm. The correlation matrix cxx is diagonalized, 
and the eigenvectors with the largest eigenvalues are used to form the columns of 
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w to yield the best low rank approximation CXX ~ WWT . Scaling the variables Xi 

will result in a correlation matrix CXX with slightly different eigenvalues but with 
the same rank. 

The utility of this transformation is illustrated by the following simple example. 
Consider the distribution of N = 256 binary spins shown in Figure 3. Half of the 
spins are chosen to be positive, and the location of the positive bump is arbitrary 
under the periodic boundary conditions. Since the distribution is translationally 
invariant, the correlations CIl depend only on the relative distance between spins 
Ii - jl. The eigenvectors are the Fourier modes, and their eigenvalues correspond 
to their overlap with a triangle wave. The eigenvalue spectrum of css is plotted in 
Figure 3 as sorted by their rank. In this particular case, the correlation matrix CSS 
has N /2 positive eigenvalues with a corresponding range of values. 

Now consider the matrix CXX = sin(-lI'Css /2). The eigenvalues of CXX are also 
shown in Figure 3. In contrast to the many different eigenvalues CSS, the spectrum 
of the Gaussian correlation matrix CXX has only two positive eigenvalues, with all 
the rest exactly equal to zero. The corresponding eigenvectors are a cosine and sine 
function. The generative process can thus be understood as a linear combination 
of the two eigenmodes to yield a sine function with arbitary phase. This function 
is then clipped to yield the positive bump seen in the original binary distribution. 

In comparison with the eigenvalues of CSS, the eigenvalue spectrum of CXX makes 
obvious the low rank structure of the generative process. In this case, the original 
binary distribution can be constructed using only P = 2 hidden variables, whereas 
it is not clear from the eigenvalues of CSS what the appropriate number of modes 
is. This illustrates the utility of determining the principal components from the 
calculated Gaussian correlation matrix cxx rather than working directly with the 
observable binary correlation matrix CSS. 

Handwritten Digits Example 

This model was also applied to a more complex data set. A large set of 16 x 16 
black and white images of handwritten twos were taken from the US Post Office 
digit database [9]. The pixel means and pixel correlations were directly computed 
from the images. The generative model needs to be slightly modified to account for 
the non-zero means in the binary outputs. This is accomplished by adding fixed 
biases ~i to the Gaussian variables Xi before clipping: 

Si = sgn(~i + Xi). (8) 

The biases ~i can be related to the means of the binary outputs through the ex-
pression: 

~i = J2CtX erf- 1 (Si). (9) 
This allows the biases to be directly computed from the observed means of the 
binary variables. Unfortunately, with non-zero biases, the relationship between 
the Gaussian correlations CXX and binary correlations CSS is no longer the simple 
expression found in Equation 7. Instead, the correlations are related by the following 
integral equation: 

Given the empirical pixel correlations CSS for the handwritten digits, the integral 
in Equation 10 is numerically solved for each pair of indices to yield the appropriate 
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Figure 4: Eigenvalue spectrum of CSS and CXx for handwritten images of twos. The 
inset shows the P = 16 most significant eigenvectors for cxx arranged by rows. The 
right side of the figure shows a nonlinear morph between two different instances of 
a handwritten two using these eigenvectors. 

Gaussian correlation matrix CXX . The correlation matrices are diagonalized and 
the resulting eigenvalue spectra are shown in Figure 4. The eigenvalues for CXX 
again exhibit a characteristic drop that is steeper than the falloff in the spectrum 
of the binary correlations CSs. The corresponding eigenvectors of CXX with the 16 
largest positive eigenvalues are depicted in the inset of Figure 4. These eigenmodes 
represent common image distortions such as rotations and stretching and appear 
qualitatively similar to those found by the standard PCA algorithm. 

A generative model with weights W corresponding to the P = 16 eigenvectors 
shown in Figure 4 is used to fit the handwritten twos, and the utility of this nonlin­
ear generative model is illustrated in the right side of Figure 4. The top and bottom 
images in the figure are two different examples of a handwritten two from the data 
set, and the generative model is used to morph between the two examples. The hid­
den values Yi for the original images are first determined for the different examples, 
and the intermediate images in the morph are constructed by linearly interpolat­
ing in the vector space of the hidden units. Because of the clipping nonlinearity, 
this induces a nonlinear mapping in the outputs with binary units being flipped in 
a particular order as determined by the generative model. In contrast, morphing 
using conventional PCA would result in a simple linear interpolation between the 
two images, and the intermediate images would not look anything like the original 
binary distribution [10]. 

The correlation matrix CXX also happens to contain some small negative eigen­
values. Even though the binary correlation matrix CSS is positive definite, the 
transformation in Equation 10 does not guarantee that the resulting matrix CXx 
will also be positive definite. The presence of these negative eigenvalues indicates 
a shortcoming of the generative processs for modelling this data. In particular, 
the clipped Gaussian model is unable to capture correlations induced by global 
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constraints in the data. As a simple illustration of this shortcoming in the gen­
erative model, consider the binary distribution defined by the probability density: 
P({s}) tX lim.B-+ooexp(-,BLijSiSj). The states in this distribution are defined by 
the constraint that the sum of the binary variables is exactly zero: Li Si = O. Now, 
for N 2: 4, it can be shown that it is impossible to find a Gaussian distribution 
whose visible binary variables match the negative correlations induced by this sum 
constraint. 

These examples illustrate the value of using the clipped generative model to learn 
the correlation matrix of the underlying Gaussian variables rather than using the 
correlations of the outputs directly. The clipping nonlinearity is convenient because 
the relationship between the hidden variables and the output variables is particu­
larly easy to understand. The learning algorithm differs from other nonlinear PCA 
models and autoencoders because the inverse mapping function need not be explic­
itly learned [11, 12]. Instead, the correlation matrix is directly transformed from the 
observable variables to the underlying Gaussian variables. The correlation matrix 
is then diagonalized to determine the appropriate feedforward weights. This results 
in a extremely efficient training procedure that is directly analogous to PCA for 
continuous variables. 
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