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Abstract 
This paper describes a simple and efficient method to make template-based 
object classification invariant to in-plane rotations. The task is divided into two 
parts: orientation discrimination and classification. The key idea is to perform 
the orientation discrimination before the classification. This can be accom­
plished by hypothesizing, in turn, that the input image belongs to each class of 
interest. The image can then be rotated to maximize its similarity to the train­
ing images in each class (these contain the prototype object in an upright orien­
tation). This process yields a set of images, at least one of which will have the 
object in an upright position. The resulting images can then be classified by 
models which have been trained with only upright examples. This approach 
has been successfully applied to two real-world vision-based tasks: rotated 
handwritten digit recognition and rotated face detection in cluttered scenes. 

1 Introduction 

Rotated text is commonly used in a variety of situations, ranging from advertisements, 
logos, official post-office stamps, and headlines in magazines, to name a few. For exam­
ples, see Figure 1. We would like to be able to recognize these digits or characters, regard­
less of their rotation. 

Figure 1: Common examples of images which contain text that is not axis aligned include logos, post-office 
stamps, magazine headlines and consumer advertisements. 
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The focus of this paper is on the recognition of rotated digits. The simplest method for cre­
ating a system which can recognize digits rotated within the image-plane is to employ 
existing systems which are designed only for upright digit recognition [Le Cun et aI., 
1990][Le Cun et a!., 1995a][Le Cun et ai., 1995b][Lee, 1991][Guyon et a!., 1989]. By 
repeatedly rotating the input image by small increments and applying the recognition sys­
tem at each rotation, the digit will eventually be recognized. As will be discussed in this 
paper, besides being extremely computationally expensive, this approach is also error­
prone. Because the classification of each digit must occur in many orientations, the likeli­
hood of an incorrect match is high. 

The procedure presented in this paper to make templates rotationally invariant is signifi­
cantly faster and more accurate than the one described above. Detailed descriptions of the 
procedure are given in Section 2. Section 3 demonstrates the applicability of this approach 
to a real-world vision-based task, rotated handwritten digit recognition. Section 4 closes 
the paper with conclusions and suggestions for future research. It also briefly describes the 
second application to which this method has been successfully applied, face detection in 
cluttered scenes. 

2 Making Templates Rotationally Invariant 

The process to make templates rotationally invariant is easiest to describe in the context of 
a binary classification problem; the extension to multiple classes is discussed later in this 
section. Imagine a simplified version of the digit recognition task: we want a detector for a 
single digit. Suppose we wish to tell whether the input contains the digit '3' or not. The 
challenge is that the '3' can be rotated within the image plane by an arbitrary amount. 

Recognizing rotated objects is a two step process. In the first step, a "De-Rotation" net­
work is applied to the input image. This network analyzes the input before it is given to a 
"Detection" network. If the input contains a '3', the De-Rotation network returns the 
digit's angle of rotation. The window can then be rotated by the negative of that angle to 
make the '3' upright. Note that the De-Rotation network does not require a '3' as input. If 
a non- '3' image is encountered, the De-Rotation network will return an unspecified rota­
tion. However, a rotation of a non- '3' will yield another (perhaps different) image of a 
non-'3'. When the resulting image is given to the Detection network it will not detect a 
'3'. On the other hand, a rotated '3', which may not have been detected by the Detection 
network alone, will be rotated to an upright position by the De-Rotation network, and will 
subsequently be detected as a '3' by the Detection network. 

The Detection network is trained to output a positive value only if the input contains an 
upright '3', and a negative value otherwise (even if it contains a rotated '3 '). It should be 
noted that the methods described here do not require neural networks. As shown in [Le 
Cun et al., 1995a, Le Cun et ai., 1995b] a number of other classifiers can be used. 

The De-Rotation and Detection networks are used sequentially. First, the input image is 
processed by the De-Rotation network which returns an angle of rotation, assuming the 
image contains a '3'. A simple geometric transformation of the image is performed to 
undo this rotation. If the original image contained a '3', it would now be upright. The 
resulting image is then passed to the Detection network. If the original image contained a 
'3', it can now be successfully detected. 

This idea can easily be extended to multiple-class classification problems: a De-Rotation 
network is trained for each object class to be recognized. For the digit recognition prob­
lem, 10 De-Rotation networks are trained, one for each of the digits 0 .. 9. To classify the 
digits once they are upright, a single classification network is used with 10 outputs 
(instead of the detection networks trained on individual digits - alternative approaches 
will be described later in this paper). The classification network is used in the standard 
manner; the output with the maximum value is taken as the classification. To classify a 
new image, the following procedure is used: 
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For each digitD (0 $; D $; 9): 

1. Pass image through De-Rotation-network-D. This returns the rotation angle. 

2. Rotate the image by (-1.0 * returned rotation angle). 

3. Pass the de-rotated image to the classification network. 

4. If the classification network's maximum output is output D, the activation of 
output D is recorded. Otherwise digit D is eliminated as a candidate. 

In most cases, this will eliminate all but one of the candidates. However, in some cases 
more than one candidate will remain. In these cases, the digit with the maximum recorded 
activation (from Step 4) is returned. In the unlikely event that no candidates remain, either 
the system can reject the sample as one it cannot classify, or it can return the maximum 
value which would have been recorded in Step 4 if none of the examples were rejected. 

2.1 Network Specifics 

To train the De-Rotation networks, images of rotated digits were input, with the rotation 
angle as the target output. Examples of rotated digits are shown in Figure 2. Each image is 
28x28 pixels. The upright data sets are from the MNIST database [Le Cun et at. , 1995a]. 
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Figure 2: 8 examples of each of the 10 digits to be recognized. The first example in each group of eight 
is shown with no rotation; it is as it appears in the MNIST data set. The second through eighth examples 
show the same digit rotated in-plane by random amounts. 

In the classification network, each output represents a distinct class; therefore, the stan­
dard l-of-N output representation was used with 10 outputs. To represent a continuous 
variable (the angle of rotation) in the outputs of the De-Rotation network, we used a Gaus­
sian output encoding [Pomerleau, 1992] with 90 output units. With the Gaussian encod­
ing, instead of only training the network to activate a single output (as is done in l-of-N 
encoding), outputs close to the desired output are also activated in proportion to their dis­
tance from the desired output. This representation avoids the imposed discontinuities of 
the strict l-of-N encoding for images which are similar, but have only slight differences in 
rotations. Further, this representation allows finer granularity with the same number of 
output units than would be possible if a l-of-N encoding was used [Pomerleau, 1992]. 

The network architecture for both the classification and the De-Rotation networks consists 
of a single hidden layer. However, unlike a standard fully-connected network, each hidden 
unit was only connected to a small patch of the 28x28 input. The De-Rotation networks 
used groups of hidden units in which each hidden unit was connected to only 2x2, 3x3, 
4x4 & 5x5 patches of the inputs (in each of these groups, the patches were spaced 2x2 pix­
els apart; therefore, the last three groups had overlapping patches). This is similar to the 
networks used in [Baluja, 1997][Rowley et. at, 1998a, 1998b] for face detection. Unlike 
the convolution networks used by [Le Cun et aI., 1990], the weights into the hidden units 
were not shared.1 Note that many different local receptive field configurations were tried; 
almost all had equivalent performance. 
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3 Rotated Handwritten Digit Recognition 

To create a complete rotationally invariant digit recognition system, the first step is to seg­
ment each digit from the background. The second is to recognize the digit which has been 
segmented. Many systems have been proposed for segmenting written digits from back­
ground clutter [Jain & Yu, 1997][Sato et ai., 1998][Satoh & Kanade, 1997]. In this paper, 
we concentrate on the recognition portion of the task. Given a segmented image of a 
potentially rotated digit, how do we recognize the digit? 

The first experiment conducted was to establish the base-line performance. We used only 
the standard, upright training set to train a classification network (this training set consists 
of 60,000 digits). This network was then tested on the testing set (the testing set contains 
10,000 digits) . In addition to measuring the performance on the upright testing set, the 
entire testing set was also rotated. As expected, performance rapidly degrades with rota­
tion. A graph of the performance with respect to the rotation angle is shown in Figure 3. 
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Perfonaaneeo' Network trained wtth t Jpript Dlpts 
and Tcwhd on Rotated Dlgtu Figure 3: Performance of the classification 

network trained only with upright images when 
tested on rotated images. As the angle of 
rotation increases, performance degrades. Note 
the spike around 180 degrees, this is because 
some digits look the same even when they are 
upside-down. The peak performance is 
approximately 97.5% (when the digits are 
upright). 

It is interesting to note that around 1800 rotation, performance slightly rises. This is 
because some of the digits are symmetric across the center horizontal axis - for example 
the digits '8', '1', '2' & '5' can be recognized upside-down. Therefore, at these orienta­
tions, the upright detector works well for these digits. 

As mentioned earlier, the simplest method to make an upright digit classifier handle rota­
tions is to repeatedly rotate the input image and classify it at each rotation. Thefirst draw­
back to this approach is the severe computational expense. The second drawback is that 
because the digit is examined at many rotations, it may appear similar to numerous digits 
in different orientations. One approach to avoid the latter problem is to classify the digit as 
the one that is voted for most often when examined over all rotations. To ensure that this 
process is not biased by the size of the increments by which the image is rotated, various 
angle increments are tried. As shown in the first row of Table I, this method yields low 

Table I: Exhaustive Search over all possible rotations 

Number of Angle IncreQ1ents Tried 

Exhaustive Search Method 360 100 50 
(1 degree/increment) (3.6 degree/increment) (7.2 degreeslincrement 

Most frequent vote (over all rotations) 59.5% 66.0% 65 .0% 

Most frequent vote - counted onl y when votes are positi ve 75.2% 74.5% 74.0% 
(over all rotations) 

1. Note that in the empirical comparisons presented in [Le Cun et ai., 1995aJ, convolution networks performed 
extremely well in the upright digit recognition task. However, due to limited computation resources, we were 
unable to train these networks, as each takes 14-20 days to train. The network used here was trained in 3 hours, 
and had approximately a 2.6% misclassification rate on the upright test set. The best networks reported in [Le 
Cun et ai, 1995aJ have less than 1 % error. It should be noted that the De-Rotation networks trained in this study 
can easily be used in conjunction with any classification procedure, including convolutional networks. 
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classification accuracies. One reason for this is that a vote is counted even when the clas­
sification network predicts all outputs to be less than 0 (the network is trained to predict 
+1 when a digit is recognized, and -1 when it is not). The above experiment was repeated 
with the following modification: a vote was only counted when the maximum output of 
the classification network was above O. The result is shown in the second row of Table I. 
The classification rate improved by more than 10%. 

Given these base-line performance measures2, we now have quantitative measurements 
with which to compare the effectiveness of the approach described in this paper. The per­
formance of the procedure used here, with 10 "De-Rotation" networks and a single classi­
fication network, is shown in Figure 4. Note that unlike the graph shown in Figure 3, there 
is very little effect on the classification performance with the rotation angle. 
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Figure 4: Performance ofthe combined De­
Rotation network and classification network 
system proposed in this paper. Note that the 
performance is largely unaffected by the 
rotation. The average performance, over all 
rotations, is 85.0%. 

To provide some intuition of how the De-Rotation networks perform, Figure 5 shows 
examples of how each De-Rotation networks transform each digit. Each De-Rotation net­
work suggests a rotation which makes the digit look as much like the one with which the 
network was trained. For example, De-Rotation-Network-5 will suggest a rotation that 
will make the input digit look as much like the digit '5' as possible; for example, see De­
Rotation-Network-5's effect on the digit '4'. 

Original Digit 
o 2 345 6 7 8 9 

Digit rotated by De-Rotation-Network-O 

Digit rotated by De-Rotation-Network-l 

Digit rotated by De-Rotation-Network-2 

Digit rotated by De-Rotation-Network-3 

Digit rotated by De-Rotation-Network-4 

Digit rotated by De-Rotation-Network-5 

Digit rotated by De-Rotation-Network-6 

Digit rotated by De-Rotation-Network-7 

Digit rotated by De-Rotation-Network-8 

Digit rotated by De-Rotation-Network-9 

Figure 5: Digits which have been rotated by the angles specified by each of the De-rotation networks. As 
expected (if the method is working), the digits on the diagonal (upper left to bottom right) appear upright. 

2. Another approach is to train a single network to handle both rotation and classification by using rotated digits 
as inputs, and the digit's classification as the target output. Experiments with the approach yielded results far 
below the techniques presented here. 
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As shown in Figure 4, the average classification accuracy is approximately 85.0%. The 
performance is not as good as with the upright case alone, which had a peak performance 
of approximately 97.5% (Figure 3). The high level of performance achieved in the upright 
case is unlikely for rotated digits: if all rotations are admissible, some characters are 
ambiguous. The problem is that when working correctly, De-Rotation-Network-D will 
suggest an angle of rotation that will make any input image look as much like the digit D 
as possible through rotation. In most cases when the input image is not the digit D, the 
rotation will not cause the image to look like D. However, in some cases, such as those 
shown in Figure 6(right), the digit will be transformed enough to cause a classification 
error. Some of these errors will most likely never be correctable (for example, '6' and '9' 
in some instances); however, there is hope for correcting some of the others. 

Figure 6 presents the complete confusion matrix. As can be seen in the examples in Figure 
6(right), the digit '4' can be rotated to appear similar to a'S'. Nonetheless, there often 
remain distinctive features that allow real '5's to be differentiated from the rotated '4's. 
However, the classification network is unable to make these distinctions because it was 
not trained with the appropriate examples. Remember, that since the classification net­
work was only trained with the upright digit training set, rotated '4's are never encoun­
tered during training. This reflects a fundamental discrepancy in the training/testing 
procedure. The distributions of images which were used to train the classification network 
is different than the distributions on which the network is tested. 

To address this problem, the classification mechanism is modified. Rather than using the 
single 1-oj-1O neural network classifier used previously, 10 individual Detection networks 
are used. Each detection network has a single binary output that signifies whether the 
input contains the digit (upright) with which the network was trained. Each De-Rotation 
network is paired with the respective Detection network. The crucial point is that rather 
than training the Detection-Network-D with the original upright images in the training 
set, each image (whether it is a positive or negative example) is first passed through De­
Rotation-Network-D. Although this makes training Detection-Network-D difficult since 
all the digits are rotated to appear as much like upright-D's as possible by De-Rotation­
Network-D, the distribution of training images matches the testing distribution more 
closely. In use, when a new image is presented, it is passed through the lO network pairs. 
Candidate digits are eliminated if the binary output from the detection network does not 
signal a detection. Preliminary results with this new approach are extremely promising; 
the classification accuracy increases dramatically - to 93% when averaged over all rota­
tions. This is a more than a 50% reduction in error over the previously described approach. 
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Figure 6: Example errors. (LEFI) Confusion Matrix (only entries account for 2% or more entries are 
filled in for ease of reading). (RlGH1) some of the errors made in classification. 3 examples of each of the 
errors are shown. Row A: '4' mistaken as '5'. Row B: '5' mistaken as '6', Row C: '7' mistaken as '2'. Row 
D: '7' mistaken as '6'. Row E: '8' mistaken as '4', Row F: '9' mistaken as '5', Row G: '9' mistaken as '6'. 
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4 Conclusions and Future Work 

This paper has presented results on the difficult problem of rotated digit recognition. First, 
we presented base-line results with naive approaches such as exhaustively checking all 
rotations. These approaches are both slow and have large error rates. Second, we pre­
sented results with a novel two-stage approach which is both faster and more effective 
than the naive approaches. Finally, we presented preliminary results with a new approach 
that more closely models the training and testing distributions. 

We have recently applied the techniques presented in this paper to the detection of faces in 
cluttered scenes. In previous studies, we presented methods for finding all upright frontal 
faces [Rowley et aT., 1998aJ. By using the techniques presented here, we were able to 
detect all frontal faces, including those which were rotated within the image plane [Baluja, 
1997][Rowley et al., 1998b J. The methods presented in this paper should also be directly 
applicable to full alphabet rotated character recognition. 

In this paper, we examined each digit individually. A straight-forward method to eliminate 
some of the ambiguities between rotationally similar digits is to use contextual informa­
tion. For example, if surrounding digits are all rotated to the same amount, this provides 
strong hints about the rotation of nearby digits. Further, in most real-world cases, we 
might expect digits to be close to upright; therefore, one method of incorporating this 
information is to penalize matches which rely on large rotation angles. 

This paper presented a general way to make template-based recognition rotation invariant. 
In this study, both the rotation estimation procedures and the recognition templates were 
implemented with neural-networks. Nonetheless, for classification, any technique which 
implements a form of templates, such as correlation templates, support vector machines, 
probabilistic networks, K-Nearest Neighbor, or principal component-based methods, 
could have easily been employed. 
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