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Abstract 

Lateral competition within a layer of neurons sharpens and localizes the 
response to an input stimulus. Here, we investigate a model for the ac­
tivity dependent development of ocular dominance maps which allows 
to vary the degree of lateral competition. For weak competition, it re­
sembles a correlation-based learning model and for strong competition, 
it becomes a self-organizing map. Thus, in the regime of weak compe­
tition the receptive fields are shaped by the second order statistics of the 
input patterns, whereas in the regime of strong competition, the higher 
moments and "features" of the individual patterns become important. 
When correlated localized stimuli from two eyes drive the cortical de­
velopment we find (i) that a topographic map and binocular, localized 
receptive fields emerge when the degree of competition exceeds a critical 
value and (ii) that receptive fields exhibit eye dominance beyond a sec­
ond critical value. For anti-correlated activity between the eyes, the sec­
ond order statistics drive the system to develop ocular dominance even 
for weak competition, but no topography emerges. Topography is estab­
lished only beyond a critical degree of competition. 

1 Introduction 

Several models have been proposed in the past to explain the activity depending develop­
ment of ocular dominance (00) in the visual cortex. Some models make the ansatz of 
linear interactions between cortical model neurons [2, 7], other approaches assume com­
petitive winner-take-all dynamics with intracortical interactions [3, 5]. The mechanisms 
that lead to ocular dominance critically depend on this choice. In linear activity models, 
second order correlations of the input patterns determine the receptive fields. Nonlinear 
competitive models like the self-organizing map. however, use higher order statistics of the 
input stimuli and map their features. In this contribution. we introduce a general nonlinear 



140 

Oil x 

pLIl 
• 

pRIl 
• 

C. Pie pen brock and K. Obermayer 

Figure I: Model for OD development: the in­
~~~~~~mQQQ!~§QJ Cortex put patterns p/!J. and P!RJ-L in the LGN drive 

R the Hebbian modification of the cortical affer-
YJ LGN ent synaptic weights S~i and S~. Cortical neu-

~:=:::=:::. left-eye rons are in competition and interact with effec­
Rl right-eye tive strengths f xy. Locations in the LGN are in-

J dexed i or j, cortical locations are labeled x or y. 

Hebbian development rule which interpolates the degree of lateral competition and allows 
us to systematically study the role of non-linearity in the lateral interactions on pattern for­
mation and the transition between two classes of models. 

2 Ocular Dominance Map Development by Hebbian Learning 

Figure I shows our basic model framework for ocular dominance development. We con­
sider two input layers in the lateral geniculate nucleus (LGN). The input patterns f1 = 
1, ... , U on these layers originate from the two eyes and completely characterize the in­
put statistics (the mean activity P is identical for all input neurons). The afferent synaptic 
connection strengths of cortical cells develop according to a generalized Hebbian learning 
rule with learning rate ",. 

ASLJ-L - ~ f 0- J-LpLJ-L 
L). xi - '" ~ xy y i 

y 

( I ) 

An analogous rule is used for the connections from the right eyes S~. We use v = 2 in the 
following and rescale the length of each neurons receptive field weight vector to a constant 
length after a learning step. The model includes effective cortical interactions fry for the 
development of smooth cortical maps that spread the output activities 6~ in the neighbor­
hood of neuron x (with a mean j = ~ Lx fry for N output neurons). The cortical output 
signals are connectionist neurons with a nonlinear activation function g(.), 

_ exp({3HJ-L) 
Ot = g(H~) = Lz exp(;3~r) with H~ = L(S~jPjLJ-L + s~pt!J.) , 

j 

(2) 

which models the effect of cortical response sharpening and competition for an input stim­
ulus. The degree of competition is determined by the parameter {3. Such dynamics may re­
sult as an effect of local excitation and long range inhibition within the cortical layer [6, I], 
and in the limits of weak and strong competition, we recover two known types of develop­
mental models-the correlation based learning model and the self-organizing map. 

2.1 From Linear Neurons to Winner-take-all Networks 

In the limit ;3 ---+ 0 of weak cortical competition. the output 6~ becomes a linear function 
of the input. A Taylor series expansion around 13 = 0 yields a correlation-based-learning 
(CBL) rule in the average over all patterns 

~st T];3L ~(l:rz - j)(S~jctL + S~CflL) +const .. 
z .j 

where CfiL = b LJ-L ptJ-L p/J-L is the correlation function of the input patterns. Ocular 
dominance development under this rule requires correlated activity between inputs from 
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Figure 2: The network response for different degrees of cortical competition: the plots 
show the activity rates Ly 1 xy 6~ for a network of cortical output neurons (the plots are 
scaled to have equal maxima). Each gridpoint represents the activity of one neuron on a 
16 x 16 grid. The interactions Ixy are Gaussian (variance 2.25 grid points) and all neu­
rons are stimulated with the same Gaussian stimulus (variance 2.25). The neurons have 
Gaussian receptive fields (variance (J'2 = 4.5) in a topographic map with additive noise 
(uniformly distributed with amplitude 10 times the maximum weight value). 

within one eye and anti-correlated activity (or uncorrelated activity with synaptic competi­
tion) between the two eyes [2,4]. It is important to note, however, that CBL models cannot 
explain the emergence of a topographic projection. The topography has to be hard-wired 
from the outset of the development process which is usually implemented by an "arbor 
function" that forces all non-topographic synaptic weights to zero. 

Strong competition with (3 --t 00, on the other hand, leads to a self-organizing map [3, 5], 

~sf: = TJlxq(Jl)P/Jl with q(ll) = argmaXy I)S~jPf!l + s~ptJl) . 
j 

Models of this type use the higher order statistics of the input patterns and map the impor­
tant features of the input. In the SOM limit, the output activity pattern is identical in shape 
for all input stimuli. The input influences only the location of the activity on the output 
layer but does not affect its shape. 

For intermediate values of (3, the shape of the output activity patterns depends on the input. 
The activity of neurons with receptive fields that match the input stimulus better than oth­
ers is amplified, whereas the activity of poorly responding neurons is further suppressed as 
shown in figure 2. On the one hand, the resulting output activity profiles for intermediate (3 
may be biologically more realistic than the winner-take-alllimit case. On the other hand, 
the difference between the linear response case (low (3) and the nonlinear competition (in­
termediate (3) is important in the Hebbian development process-it yields qualitatively dif­
ferent results as we show in the next section. 

2.2 Simulations of Ocular Dominance Development 

In the following, we study the transition from linear CBL models to winner-take-all SOM 
networks for intermediate values of 13. We consider input patterns that are localized and 
show ocular dominance 

p.LJl = 0.5 + eyeL (11) exp (_ (i -IOC(f-L))2) with eyeL (f-L) = -eyeR (f-L) (3) 
l 2rr(J'2 2(J'2 

Each stimulus 11 is of Gaussian shape centered on a random position loc(ll) within the input 
layer and the neuron index i is interpreted as a two-dimensional location vector in the input 
layer. The parameter eye (f-L) sets the eye dominance for each stimulus. eye = 0 produces 
binocular stimuli and eye = ± ~ results in uncorrelated left and right eye activities. 

We have simulated the development of receptive fields and cortical maps according to 
equations 1 and 2 (see figure 3) for square grids of model neurons with periodic bound­
ary conditions, Gaussian cortical interactions. and 00 stimuli (equation 3). The learning 
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Figure 3: Simulation of ocular dominance development for a varying degree of cortical 
competition ;3 in a network of 16 x 16 neurons in each layer. The figure shows receptive 
fields sizes (left) and mean 00 value (right) as a function of cortical competition 8. Each 
point in the figure represents one simulation with 30000 pattern presentations. The cortical 
interactions are Gaussian with a variance of "{ 2 = 2.25 grid points. The Gaussian input 
stimuli are 5.66 times stronger in one eye than in the other (equation 3 with (j2 = 2.25, 
eye(f.-t) = ±O .35). The synaptic weights are intialized with a noisy topographic map 
(curves labeled "no aD") and additionally with ocular dominance stripes (curves labeled 
"with aD"). To determine the receptive field size we have applied a Gaussian fit to all re­
ceptive field profiles sf; and st and averaged the standard deviation (in grid points) over 
all neurons x . The mean 00 value is given by ~ L x J L i(Sf; - S{; )I L i(Sfx + S{!.)J. 

rate is set at the first stimulus presentation to change the weights of the best responding 
neuron by half a percent. After each learning step the weights are rescaled to enforce the 
constraint from equation I. 

The simulations yield the results expected in the CBL and SaM limit cases (small and 
large (3) for initially constant synaptic weight values with 5 percent additional noise. In the 
CBL limit, our particular choice of input patterns does not lead to the development of oc­
ular dominance, because the necessary conditions for the input pattern correlations are not 
satisfied-the pattern correlations and interactions are all positive. Instead, the learning 
rule has only one fixpoint with uniform synaptic weights-unstructured receptive fields 
that cover the whole input layer. In the SaM limit, our set of stimuli leads to the emer­
gence of a topographic projection with localized receptive fields and ocular dominance 
stripes. The topographic maps often develop defects which can be avoided by an annealing 
scheme. Instead of annealing {3 or the cortical interaction range, however, we initialize the 
weights with a topographic projection and some additive noise. This is a common assump­
tion in cortical development models [2], because the fibers from the LGN first innervate 
the visual cortex already in a coarsely topographic order. 

For intermediate degrees of cortical competition, we find sharp transitions between the 
CBL and SaM states and distinguish three parameter regimes (see figure 3). For weak 
competition (A) all receptive fields are unstructured and cover the whole input layer. At 
some critical {3* , the receptive fields begin to form a topographic projection from the genic­
ulate to the cortical layer. This projection (B) has no stable ocular dominance stripes, but 
a small degree of ocular dominance that fluctuates continuously. For yet stronger competi­
tion (C), a cortical map with stable ocular dominance stripes emerges . 

The simulations, however, show that a topographic map without ocular dominance remains 
a stable attractor of the learning dynamics (C) . For increasing competition its basin of at­
traction becomes smaller, and smaller learning rates are necessary in order to remain within 
the binocular state. On the one hand, simulations with slowly increasing beta lead to a to-
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Figure 4: Simulations for the learning equation 5. The figure shows the mean ocular dom­
inance (left) and the cost (right) as a function of (3 . The parameters are identical to figure 3 
and eye(p) = ±O.425. 

pographic map and ocular dominance stripes suddenly pop up somewhere in regime C­
for small learning rates later than for large ones. On the other hand, in simulations with 
decreasing (3 and an initially topographic map with ocular dominance, we find a second 
critical (3+ at which the OD map becomes unstable. 

To understand the system's properties better, we analytically predict the value (3* -the 
point where structured receptive fields emerge-and discuss the relation to cost functions 
to get some intuition about the value (3+ in the following paragraph. 

2.3 Analysis of the Emergence of Structured Receptive Fields 

For (3 < (3* the system shows basically CBL properties-in our case constant weights and 
unstructured receptive fields. It is possible to study the stability of this state analytically. 
We consider the learning equation I under a hard renormalization constraint that enforces 

L~l (S~i )2 + ( S~)2 = 2M 52 by rescaling the weights after each learning step. A linear 
perturbation analysis of the learning rule around constant weights yields a critical degree 
of competition (3* = (5 ).~ax ).~aJ -1 where 5 is the strength of the constant synaptic 
weights. ).~ax is the largest eigenvalue of the input covariance matrix 

~ ( [ C~~ C~:] _ p2) , 
P Cji Cji 

which has to be diagonalized with respect to Land R, as well as with respect to i and j. 
The input correlation functions for the patterns from equation 3 are given by Cfl = 
CflR = (~+ 2eye2)bG(i - j , 20'2) and ctR = CfiL = (~- 2eye2)bG (i - j, 20'2) 

where G Cr, 0'2) is a two-dimensional Gaussian with variance 0'2. The eigenvalues with re­
spect to Land R in this symmetric case_ are the sum and difference terms of the correlation 
functions /{sum = .l(CLL + C~R _ p 2) and /{d.lff = .l(C L.L - GLR ) The term I{ sum 

lJ p Jl J l lJ P Jl Jl' lJ 
is larger for positive input correlations and in the next step we have to find the eigenval-
ues of this matrix. For periodic boundary conditions and in the limit of large networks, we 
can approximate the eigenvalue by the fourier transform of the Gaussian and finally obtain 
).~ax = exp ( - (0'211' /m)2) (for a square grid of M = m x m neurons). ).~ ax is the 
largest eigenvalue of (J Jlxz - ~) and Gaussian cortical interactions Ixy with variance , '2 
on N = n x n output neurons yield ).~ax = exp ( - ~h211' /n)2). Stronger competition 
beyond the point (3* leads to the formation of structured receptive fields. It is interesting to 
note, that the critical (3* does not depend on eye(p) , the strength of ocularity in the input 
patterns. The predicted value for (3* is plotted in figure 3 and matches the transition found 
in the simulations. 
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2.4 Hebbian Development With a Global Objective Function 

The learning equation 1 does not optimize a global cost function [5]. To understand the 
dynamics of the 00 development better and to interpret the transition at /3*, we derive a 
learning rule very similar to equation 1 that minimizes the global cost function E, 

1 
E = u L O~cost~ with cost~ = - L Ixy(S~jPjLJ.I + SijprJ.l) . (4) 

J.I ,X y,j 

We minimize this cost function in a stochastic network of binary output neurons 0'; that 
compete for the input stimuli, i.e. one output neuron is active at any given time. The prob­
ability for a neuron y to become active in response to pattern J.l. depends on its advantage 
in cost over the currently active neuron x: 

P( O~ = 1 -t O~ = 1) 
exp[-/3(costi - cost~)] 

I:z exp[ - /3( cost'; - cost~)] 

This type of output dynamics leads to a Boltzmann probability distribution for the state of 
the system. We marginalize over all possible network outputs and derive a learning rule by 
gradient descent on the log likelihood of a particular set of synaptic connections (subject 
to I:i(S~i)n + (s~)n = const.). 

L a L R a "" 1 ~Sxi T/ aSL log Prob( {Sxi' Sxi}) = aSL log L.J Z exp( -BE) . 
Xl Xl {O~} 

Finally, we obtain a learning rule that contains the expectation values 0'; (or mean fields) 
of the binary outputs, 

~SLJ.I='TI""I Ot'pLJ.lwithOJ.l= exp(,8I:y,jlxy (S{;jP/J.I+S{hprt')) 5 
Xl ./ L.J xy Y z X '\"' . '\"' L LJ.I R RJ.I)· ( ) 

y D Z exp(,8Dy ,j Izy (Syj Pj +SyjPj ) 

This learning rule is almost identical to equation 1, it only contains an additional cortical 
interaction inside the output term 0';, but it has the advantage of an underlying cost func­
tion. 

Figure 4 shows the development of ocular dominance according to equation 5 and the as­
sociated cost is plotted for each state of the system. The value {3* of the first transition is 
calculated analogously to the previous section and ).:nax becomes the maximum eigenvalue 
of the matrix (J[ I:y Ixylyz -1) which is ).~ax = exp (- ('"y27l'/m)2). Around,8+ a to­
pographic map without ocular dominance is a stable state and it remains stable for larger ,8. 
In addition, a different minimum of the cost function equation 4 emerges at (3+: an ocular 
dominance map with a lower associated cost. This shows that an ocular dominance map 
becomes the preferred state of the system beyond,8+ although the binocular topographic 
map is still stable. In the SOM limit,8 -t 00 the binocular topographic map becomes 
unstable and ocular dominance stripes develop. 

The value,8+ marks the first emergence of an ocular dominance map. For the simulations 
in the figures 3 and 4 we have used positive correlations between the two eyes-a real­
istic assumption for 00 map development. For weaker correlations (eye(J.l.) approaches 
± ~), ,8+ decreases. For anti-correlated stimuli, an ocular dominance map develops even 
in the CBL limit [4] (this, however, requires additional model assumptions like inhibi­
tion between the layers within the LGN). Such a map has no topographic structure (if 
not imposed by an arbor function) but mostly monocular receptive fields. The value ,8* 
is not affected directly by those changes and the monocular receptive fields localize, if ;3* 
is exceeded. Consequently, the "feature" 00 emerges, if it is dominant in the relevant 
pattern statistics-for anti-correlated eyes around ,8 = 0, and for positive between-eye­
correlations only in the regime of higher order moments at /3+ . 
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3 Conclusions 

We have introduced a model for cortical development with a variable degree of cortical 
competition. For weak competition it has CBL models, for strong competition the SOM 
as limit cases. Localized stimuli with ocular dominance require a minimum degree of cor­
tical competition to develop a topographic map, and a stronger degree of competition for 
the emergence of ocular dominance stripes. Anti-correlated activity between the two eyes 
lets OD emerge for weak competition and localized fields only beyond a critical degree of 
competition. 

A Taylor series expansion of the learning equation I yields a CBL model that uses only 
second order input statistics. For increasing !3 the higher order terms become significant 
which consist of the higher moments of the input patterns. In this contribution, we have 
used only simple activity blobs in two eyes, but it is well known that in the winner-take-all 
limit features like orientation selectivity can emerge as well [3]. 

The soft cortical competition in our model implements a mechanism of response sharpen­
ing in which the input patterns do still influence the output pattern shape. This should relax 
the biologically unplausible assumption of winner-take-all dynamics of SOM models and 
yields similar ocular dominance maps. Cortical microcircuits-local cortical amplifiers­
have been proposed as a cortical module of computation [6]. Our model suggests that such 
circuits may be important to sharpen the responses during the development and to permit 
the emergence offeature mapping simple cell receptive fields . 

Our model shows that small changes in the degree of cortical competition may result in 
qualitative changes of the emerging receptive fields and cortical maps. Such changes in 
competition could be a result of the maturation of the intra-cortical connectivity. A slowly 
increasing degree of cortical competition could make the cortical neurons sensitive to more 
and more complex features of the input stimuli . 

Acknowledgements 

This work was supported by the Boehringer Ingelheim Fonds (C. Piepenbrock) and by 
DFG grant Ob 102/2-1. 

References 

[1] S. Amari. Dynamics of pattern formation in lateral-inhibition type neural fields . Bioi. 
Cyb., 27:77-87, 1977. 

[2] K. D. Miller, J. B. Keller, and M. P. Stryker. Ocular dominance column development: 
Analysis and simulation. Science, 245:605-615, 1989. 

[3] K. Obermayer, H. Ritter, and K. Schulten. A principle for the formation of the spatial 
structure of cortical feature maps. Proc. Nat. Acad. Sci. USA, 87:8345-49, 1990. 

[4] C. Piepenbrock, H. Ritter, and K. Obermayer. The joint development of orientation 
and ocular dominance: Role of constraints. Neur. Comp., 9:959-970, 1997. 

[5] M. Riesenhuber, H.-U. Bauer, and T. Geisel. Analyzing phase transitions in high­
dimensional self-organizing maps. Biol. Cyb., 75 :397-407, 1996. 

[6] D. C. Somers, S. B. Nelson, and M. Sur. An emergent model of orientation selectivity 
in cat visual cortical simple cells. 1. Neurosci., 15:5448-5465, 1995. 

[7] A. L. Yuille, J. A. Kolodny, and C. W. Lee. Dimension reduction, generalized de­
formable models and the development of ocularity and orientation. Neur. Netw., 9:309-
319,1996. 


