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Abstract 

We propose a new in-sample cross validation based method (randomized 
GACV) for choosing smoothing or bandwidth parameters that govern the 
bias-variance or fit-complexity tradeoff in 'soft' classification. Soft clas­
sification refers to a learning procedure which estimates the probability 
that an example with a given attribute vector is in class 1 vs class O. The 
target for optimizing the the tradeoff is the Kullback-Liebler distance 
between the estimated probability distribution and the 'true' probabil­
ity distribution, representing knowledge of an infinite population. The 
method uses a randomized estimate of the trace of a Hessian and mimics 
cross validation at the cost of a single relearning with perturbed outcome 
data. 

1 INTRODUCTION 

We propose and test a new in-sample cross-validation based method for optimizing the bias­
variance tradeoff in 'soft classification' (Wahba et al1994), called ranG ACV (randomized 
Generalized Approximate Cross Validation) . Summarizing from Wahba et al(l994) we are 
given a training set consisting of n examples, where for each example we have a vector 
t E T of attribute values, and an outcome y, which is either 0 or 1. Based on the training 
data it is desired to estimate the probability p of the outcome 1 for any new examples in the 
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future. In 'soft' classification the estimate p(t) of p(t) is of particular interest, and might be 
used by a physician to tell patients how they might modify their risk p by changing (some 
component of) t, for example, cholesterol as a risk factor for heart attack. Penalized like­
lihood estimates are obtained for p by assuming that the logit f(t), t E T, which satisfies 
p(t) = ef(t) 1(1 + ef(t») is in some space 1{ of functions . Technically 1{ is a reproducing 
kernel Hilbert space, but you don't need to know what that is to read on. Let the training 
set be {Yi, ti, i = 1,···, n}. Letting Ii = f(td, the negative log likelihood .c{Yi, ti, fd of 
the observations, given f is 

n 

.c{Yi, ti, fd = 2::[-Ydi + b(li)], (1) 
i=1 

where b(f) = log(l + ef ). The penalized likelihood estimate of the function f is the 
solution to: Find f E 1{ to minimize h. (I): 

n 

h.(f) = 2::[-Ydi + b(ld) + J>.(I), (2) 
i =1 

where 1>.(1) is a quadratic penalty functional depending on parameter(s) A = (AI, ... , Aq) 
which govern the so called bias-variance tradeoff. Equivalently the components of A con­
trol the tradeoff between the complexity of f and the fit to the training data. In this paper we 
sketch the derivation of the ranG ACV method for choosing A, and present some prelim­
inary but favorable simulation results, demonstrating its efficacy. This method is designed 
for use with penalized likelihood estimates, but it is clear that it can be used with a variety 
of other methods which contain bias-variance parameters to be chosen, and for which mini­
mizing the Kullback-Liebler (K L) distance is the target. In the work of which this is a part, 
we are concerned with A having multiple components. Thus, it will be highly convenient 
to have an in-sample method for selecting A, if one that is accurate and computationally 
convenient can be found. 

Let P>. be the the estimate and p be the 'true' but unknown probability function and let 
Pi = p(td,p>.i = p>.(ti ). For in-sample tuning, our criteria for a good choice of A is 

the KL distance KL(p,p>.) = ~ E~I[PilogP7. + (1- pdlogg~::?)]. We may replace 
K L(p,p>.) by the comparative K L distance (C K L), which differs from K L by a quantity 
which does not depend on A. Letting hi = h (ti), the C K L is given by 

1 n 
CKL(p,p>.) == CKL(A) = ;;, 2:: [-pd>'i + b(l>.i)). (3) 

i=) 

C K L(A) depends on the unknown p, and it is desired is to have a good estimate or proxy 
for it, which can then be minimized with respect to A. 

It is known (Wong 1992) that no exact unbiased estimate of CK L(A) exists in this case, so 
that only approximate methods are possible. A number of authors have tackled this prob­
lem, including Utans and M90dy(1993), Liu(l993), Gu(1992). The iterative U BR method 
of Gu(l992) is included in GRKPACK (Wang 1997), which implements general smooth­
ing spline ANOVA penalized likelihood estimates with multiple smoothing parameters. It 
has been successfully used in a number of practical problems, see, for example, Wahba 
et al (1994,1995). The present work represents an approach in the spirit of GRKPACK 
but which employs several approximations, and may be used with any data set, no matter 
how large, provided that an algorithm for solving the penalized likelihood equations, either 
exactly or approximately, can be implemented. 
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2 THE GACV ESTIMATE 

In the general penalized likelihood problem the minimizer 1>,(-) of (2) has a representation 

M n 

1>.(t) = L dv<Pv(t) + L CiQ>.(ti, t) (4) 
v=l i=l 

where the <Pv span the null space of 1>" Q>.(8, t) is a reproducing kernel (positive definite 
function) for the penalized part of 7-1., and C = (Cl' ... ,Cn)' satisfies M linear conditions, 
so that there are (at most) n free parameters in 1>.. Typically the unpenalized functions 
<Pv are low degree polynomials. Examples of Q(ti,') include radial basis functions and 
various kinds of splines; minor modifications include sigmoidal basis functions, tree basis 
functions and so on. See, for example Wahba( 1990, 1995), Girosi, Jones and Poggio( 1995). 
If f>.C) is of the form (4) then 1>,(f>.) is a quadratic form in c. Substituting (4) into (2) 
results in h a convex functional in C and d, and C and d are obtained numerically via a 
Newton Raphson iteration, subject to the conditions on c. For large n, the second sum on 

the right of (4) may be replaced by L~=1 Cik Q>. (tik , t), where the tik are chosen via one 
of several principled methods. 

To obtain the CACV we begin with the ordinary leaving-out-one cross validation function 
CV(.\) for the CKL: 

n 

( _ 1 "" [-i] ( ] CV .\) - - LJ-yd>.i + b 1>.i) , 
n 

(5) 
i=1 

where fl- i ] the solution to the variational problem of (2) with the ith data point left out 

and fti] is the value of fl- i] at ti . Although f>.C) is computed by solving for C and d 
the CACV is derived in terms of the values (it"", fn)' of f at the ti. Where there is 
no confusion between functions f(-) and vectors (it, ... ,fn)' of values of fat tl, ... ,tn, 
we let f = (it, ... " fn)'. For any f(-) of the form (4), J>. (f) also has a representation as 
a non-negative definite quadratic form in (it, . .. , fn)'. Letting L:>. be twice the matrix of 
this quadratic form we can rewrite (2) as 

n 1 
h(f,Y) = L[-Ydi + b(/i)] + 2f'L:>.f. 

i=1 

(6) 

Let W = W(f) be the n x n diagonal matrix with (/ii == Pi(l - Pi) in the iith position. 
Using the fact that (/ii is the second derivative of b(fi), we have that H = [W + L:>.] - 1 
is the inverse Hessian of the variational problem (6). In Xiang and Wahba (1996), several 
Taylor series approximations, along with a generalization of the leaving-out-one lemma 
(see Wahba 1990) are applied to (5) to obtain an approximate cross validation function 
ACV(.\), which is a second order approximation to CV(.\) . Letting hii be the iith entry 
of H , the result is 

CV(.\) ~ ACV('\) = .!. t[-Yd>.i + b(f>.i)] + .!. t hiiYi(Yi - P>.i) . (7) 
n i= l n i=1 [1 - hiwii] 

Then the GACV is obtained from the ACV by replacing hii by ~ L~1 hii == ~tr(H) 
and replacing 1 - hiWii by ~tr[I - (Wl/2 HWl/2)], giving 

1 ~ ] tr(H) L~l Yi(Yi - P>.i) 
CACV('\) = ;; t;;[-Yd>.i + b(1).i) + -n-tr[I _ (Wl/2HWl /2)] , (8) 

where W is evaluated at 1>.. Numerical results based on an exact calculation of (8) appear 
in Xiang and Wahba (1996). The exact calculation is limited to small n however. 
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3 THE RANDOMIZED GACV ESTIMATE 

Given any 'black box' which, given >., and a training set {Yi, ti} produces f>. (.) as the min­
imizer of (2), and thence f>. = (fA 1 , "' , f>.n)', we can produce randomized estimates of 
trH and tr[! - W 1/ 2 HW 1/2 J without having any explicit calculations of these matrices. 
This is done by running the 'black box' on perturbed data {Vi + <5i , td. For the Yi Gaus­
sian, randomized trace estimates of the Hessian of the variational problem (the 'influence 
matrix') have been studied extensively and shown to be essentially as good as exact calcu­
lations for large n, see for example Girard(1998) . Randomized trace estimates are based 
on the fact that if A is any square matrix and <5 is a zero mean random n-vector with inde­
pendent components with variance (TJ, then E<5' A<5 = ~ tr A. See Gong et al( 1998) and 

u" 
references cited there for experimental results with multiple regularization parameters. Re-
turning to the 0-1 data case, it is easy to see that the minimizer fA(') of 1;.. is continuous in 
Y, not withstanding the fact that in our training set the Yi take on only values 0 or 1. Letting 

if = UA1,"', f>.n)' be the minimizer of (6) given y = (Y1,"', Yn)', and if+O be the 
minimizer given data y+<5 = (Y1 +<51, ... ,Yn +<5n)' (the ti remain fixed), Xiang and Wahba 
(1997) show, again using Taylor series expansions, that if+O - ff ,....., [WUf) + ~AJ-1<5. 
This suggests that ~<5'Uf+O - ff) provides an estimate oftr[W(ff) + ~At1. However, 

u" 
if we take the solution ff to the nonlinear system for the original data Y as the initial value 

for a Newton-Raphson calculation of ff+O things become even simpler. Applying a one 
step Newton-Raphson iteration gives 

(9) 

Since Pjf(ff,y + <5) = -<5 + PjfUf,Y) = -<5, and [:;~f(ff,Y + <5)J - 1 

[ 82 h(fY )J- 1 h f y+o,l - fY [ 8 2 h(fY )J- 1 J: h f y+o,l fY 8?7if A' Y ,we ave A - A + 8?7if A' Y u so t at A - A 
[WUf) + EAt 1<5. The result is the following ranGACV function: 

n <5' (fY+O,l fY) ",n ( ) 
ranGACV(>.) = .!. ~[- 'I '+bU .)J+ A - A wi=l Yi Yi - PAi . 

n ~ Yz At At n [<5'<5 - <5'WUf)Uf+O,l - ff)J 
(10) 

To reduce the variance in the term after the '+' in (10), we may draw R 
independent replicate vectors <51,'" ,<5R , and replace the term after the '+' in 

(1O)b 1... ",R o:(fr Hr .1 -ff) 2:7-1 y.(y.-P>..) to obtain an R-replicated 
y R wr=l n [O~Or-O~ W(fn(f~+Ar . l-ff)1 

ranGACV(>.) function. 

4 NUMERICAL RESULTS 

In this section we present simulation results which are representative of more extensive 
simulations to appear elsewhere. In each case, K < < n was chosen by a sequential clus­
tering algorithm. In that case, the ti were grouped into K clusters and one member of each 
cluster selected at random. The model is fit. Then the number of clusters is doubled and the 
model is fit again. This procedure continues until the fit does not change. In the randomized 
trace estimates the random variates were Gaussian. Penalty functionals were (multivariate 

generalizations of) the cubic spline penalty functional>. fa1 U" (X))2, and smoothing spline 
ANOVA models were fit. 
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4.1 EXPERIMENT 1. SINGLE SMOOTHING PARAMETER 

In this experiment t E [0,1], f(t) = 2sin(10t), ti = (i - .5)/500, i = 1,···,500. A 
random number generator produced 'observations' Yi = 1 with probability Pi = el , /(1 + 
eli), to get the training set. Q A is given in Wahba( 1990) for this cubic spline case, K = 50. 
Since the true P is known, the true CKL can be computed. Fig. l(a) gives a plot of 
CK L(A) and 10 replicates of ranGACV(A). In each replicate R was taken as 1, and J 
was generated anew as a Gaussian random vector with (115 = .001. Extensive simulations 
with different (115 showed that the results were insensitive to (115 from 1.0 to 10-6 • The 
minimizer of C K L is at the filled-in circle and the 10 minimizers of the 10 replicates of 
ranGACV are the open circles. Anyone of these 10 provides a rather good estimate of 
the A that goes with the filled-in circle. Fig. l(b) gives the same experiment, except that 
this time R = 5. It can be seen that the minimizers ranGACV become even more reliable 
estimates of the minimizer of C K L, and the C K L at all of the ranG ACV estimates are 
actually quite close to its minimum value. 

4.2 EXPERIMENT 2. ADDITIVE MODEL WITH A = (Al' A2) 

Here t E [0,1] 0 [0,1]. n = 500 values of ti were generated randomly according to 
a uniform distribution on the unit square and the Yi were generated according to Pi = 
eli j(l + el ,) with t = (Xl,X2) and f(t) = 5 sin 27rXl - 3sin27rX2. An additive model 
as a special case of the smoothing spline ANOVA model (see Wahba et al, 1995), of the 
form f(t) = /-l + h(xd + h(X2) with cubic spline penalties on hand h were used. 
K = 50, (115 = .001, R = 5. Figure l(c) gives a plot of CK L(Al' A2) and Figure l(d) 
gives a plot of ranGACV(Al, A2). The open circles mark the minimizer of ranGACV 
in both plots and the filled in circle marks the minimizer of C K L. The inefficiency, as 

measured by CKL()..)/minACKL(A) is 1.01. Inefficiencies near 1 are typical of our 
other similar simulations. 

4.3 EXPERIMENT 3. COMPARISON OF ranGACV AND UBR 

This experiment used a model similar to the model fit by GRKPACK for the risk of 
progression of diabetic retinopathy given t = (Xl, X2, X3) = (duration, glycosylated 
hemoglobin, body mass index) in Wahba et al(l995) as 'truth'. A training set of 669 
examples was generated according to that model, which had the structure f(Xl, X2, X3) = 
/-l + fl (xd + h (X2) + h (X3) + fl,3 (Xl, X3). This (synthetic) training set was fit by GRK­
PACK and also using K = 50 basis functions with ranG ACV. Here there are P = 6 
smoothing parameters (there are 3 smoothing parameters in f13) and the ranGACV func­
tion was searched by a downhill simplex method to find its minimizer. Since the 'truth' is 
known, the CKL for)" and for the GRKPACK fit using the iterative UBR method were 
computed. This was repeated 100 times, and the 100 pairs of C K L values appears in Fig­
ure l(e). It can be seen that the U BR and ranGACV give similar C K L values about 90% 
of the time, while the ranG ACV has lower C K L for most of the remaining cases. 

4.4 DATA ANALYSIS: AN APPLICATION 

Figure 1(f) represents part of the results of a study of association at baseline of pigmentary 
abnormalities with various risk factors in 2585 women between the ages of 43 and 86 in the 
Beaver Dam Eye Study, R. Klein et al( 1995). The attributes are: Xl = age, X2 =body mass 
index, X3 = systolic blood pressure, X4 = cholesterol. X5 and X6 are indicator variables for 
taking hormones, and history of drinking. The smoothing spline ANOVA model fitted was 
f(t) = /-l+dlXl +d2X2 + h(X3)+ f4(X4)+ h4(X3, x4)+d5I(x5) +d6I(x6), where I is the 
indicator function. Figure l(e) represents a cross section of the fit for X5 = no, X6 = no, 
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X2, X3 fixed at their medians and Xl fixed at the 75th percentile. The dotted lines are the 
Bayesian confidence intervals, see Wahba et al( 1995). There is a suggestion of a borderline 
inverse association of cholesterol. The reason for this association is uncertain. More details 
will appear elsewhere. 

Principled soft classification procedures can now be implemented in much larger data sets 
than previously possible, and the ranG ACV should be applicable in general learning. 
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Figure 1: (a) and (b): Single smoothing parameter comparison of ranGACV and CK L. 
(c) and (d): Two smoothing parameter comparison of ranGACV and CK L. (e): Compar­
ison of ranG ACV and U B R. (f): Probability estimate from Beaver Dam Study 


