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Abstract 

In previous work [6, 9, 10], we advanced a new technique for direct 
visual matching of images for the purposes of face recognition 
and image retrieval , using a probabilistic measure of similarity 
based primarily on a Bayesian (MAP) analysis of image differ­
ences, leading to a "dual" basis similar to eigenfaces [13]. The 
performance advantage of this probabilistic matching technique 
over standard Euclidean nearest-neighbor eigenface matching was 
recently demonstrated using results from DARPA's 1996 "FERET" 
face recognition competition, in which this probabilistic matching 
algorithm was found to be the top performer. We have further 
developed a simple method of replacing the costly com put ion of 
nonlinear (online) Bayesian similarity measures by the relatively 
inexpensive computation of linear (offline) subspace projections 
and simple (online) Euclidean norms, thus resulting in a significant 
computational speed-up for implementation with very large image 
databases as typically encountered in real-world applications. 

1 Introduction 

Current approaches to image matching for visual object recognition and image 
database retrieval often make use of simple image similarity metrics such as 
Euclidean distance or normalized correlation, which correspond to a template­
matching approach to recognition [2, 5]. For example, in its simplest form, the 
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similarity measure S(h , h) between two images hand h can be set to be inversely 
proportional to the norm 1111 - hll. Such a simple formulation suffers from a major 
drawback: it does not exploit knowledge of which types of variation are critical 
(as opposed to incidental) in expressing similarity. In this paper , we formulate a 
probabilistic similarity measure which is based on the probability that the image 
intensity differences , denoted by .6. = h - [2 , are characteristic of typical variations 
in appearance of the same object. For example, for purposes of face recognition , 
we can define two classes of facial image variations: intrapersonal variations ~h 
(corresponding, for example , to different facial expressions of the same individual) 
and extrapersonal variations OE (corresponding to variations between different 
individuals) . Our similarity measure is then expressed in terms of the probability 

(1) 

where P(011.6.) is the a posteriori probability given by Bayes rule , using estimates 
of the likelihoods P(.6.101) and P(.6.IOE)' The likelihoods are derived from training 
data using an efficient subspace method for density estimation of high-dimensional 
data [7, 8]. This Bayesian (MAP) approach can also be viewed as a generalized 
nonlinear extension of Linear Discriminant Analysis (LDA) [12, 3] or "Fisher Face" 
techniques [1] for face recognition. Moreover, our nonlinear generalization has 
distinct computational/storage advantages over some of these linear methods for 
large databases. 

2 Difference Density Modeling 

Consider the problem of characterizing the type of intensity differences which 
occur when matching two images in a face recognition task. We have two classes 
(intrapersonal 0 1 and extrapersonal OE) which we will assume form Gaussian 
distributions whose likelihoods can be estimated as P(.6.101) and P(.6.IOE) for a 
given intensity difference .6. = h - [2 . 

Given these likelihoods we can evaluate a similarity score S(h, h) between a pair 
of images directly in terms of the intrapersonal a posteriori probability as given by 
Bayes rule : 

S (2) 

where the priors P(O) can be set to reflect specific operating conditions (e.g., 
number of test images vs. the size of the database) or other sources of a priori 
knowledge regarding the two images being matched. Additionally, this particular 
Bayesian formulation casts the standard face recognition task (essentially an M -ary 
classification problem for M individuals) into a binary pattern classification problem 
with 0 1 and OE. This much simpler problem is then solved using the maximum 
a posteriori (MAP) rule - i.e. , two images are determined to belong to the same 
individual if P(011.6.) > P(OEI.6.), or equivalently, if S(h, h) > !. 
To deal with the high-dimensionality of .6. , we make use of the efficient density 
estimation method proposed by Moghaddam & Pentland [7, 8] which divides 
the vector space nN into two complementary subs paces using an eigenspace 
decomposition . This method relies on a Principal Components Analysis (PCA) 
[4] to form a low-dimensional estimate of the complete likelihood which can be 
evaluated using only the first M principal components , where M < < N. 
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3 Efficient Similarity Computation 

Consider now a feature space of ~ vectors, the differences between two images 
(Ii and h). The two classes of interest in this space correspond to intrapersonal 
and extrapersonal variations and each is modeled as a high-dimensional Gaussian 
density as in Equation 3. The densities are zero-mean since for each ~ = Ii - h 
there exists a ~ = h - I j • 

(3) 

By PCA, the Gaussians are known to only occupy a subspace of image space (face­
space) and thus, only the top few eigenvectors of the Gaussian densities are relevant 
for modeling. These densities are used to evaluate the similarity score in Equation 2. 

Computing the similarity score involves first subtracting a candidate image Ii from a 
database entry h . The resulting ~ image is then projected onto the eigenvectors of 
the extrapersonal Gaussian and also the eigenvectors of the intrapersonal Gaussian . 
The exponentials are computed, normalized and then combined as in Equation 2. 
This operation is iterated over all members of the database (many Ik images) until 
the maximum score is found (i.e. the match). Thus, for large databases, this 
evaluation is expensive but can be simplified by offline transformations. 

To compute the likelihoods p(~lrh) and P(~IOE) we pre-process the Ik images 
with whitening transformations. Each image is converted and stored as whitened 
subspace coefficients; i for intrapersonal space and e for extrapersonal space (see 
Equation 4). Here, A and V are matrices of the largest eigenvalues and eigenvectors 
of ~E or ~/. Typically, we have used MI = 100 and ME = 100 for 0 1 and OE 
respectively. 

(4) 

After this pre-processing, evaluating the Gaussians can be reduced to simple 
Euclidean distances as in Equation 5. Denominators are of course pre-computed. 
These likelihoods are evaluated and used to compute the MAP similarity S in 
Equation 2. Euclidean distances are computed between the lOa-dimensional i 
vectors as well as the lOa-dimensional e vectors. Thus, roughly 2 x (ME + AfJ) = 
400 arithmetic operations are required for each similarity computation , avoiding 
repeated image differencing and projections. 

e-tlle)-ek Il 2 

(211" )D/2[ ~E [1/2 

(5) 

The ML similarity matching is even simpler since only the intra-personal class is 
evaluated, leading to the following modified form for the similarity measure 

(6) 
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(a) (b) 

Figure 1: Examples of FERET frontal-view image paIrs used for (a) the Gallery set 
(training) and (b) the Probe set (testing). 

Figure 2: Face alignment system [7]. 

4 Experimental Results 

To test our recognition strategy we used a collection of images from the ARPA 
FERET face database. The set of images consists of pairs of frontal-views (FA/FB) 
and are divided into two subsets: the "gallery" (training set) and the "probes" 
(testing set). The gallery images consisted of 74 pairs of images (2 per individual) 
and the probe set consisted of 38 pairs of images, corresponding to a subset of the 
gallery members. The probe and gallery datasets were captured a week apart and 
exhibit differences in clothing, hair and lighting (see Figure 1). 

Each of these images were affine normalized with a canonical model using an 
automatic face-processing system which normalizes for translation, scale as well 
as slight rotations (both in-plane and out-of-plane). This system is described in 
detail in [7, 8] and uses maximum-likelihood estimation of object location (in this 
case the position and scale of a face and the location of individual facial features) 
to geometrically align faces into standard normalized form as shown in Figure 2. 
All the faces in our experiments were geometrically aligned and normalized in this 
manner prior to further analysis. 

4.1 Eigenface Matching 

As a baseline comparison, we first used an eigenface matching technique for 
recognition [13]. The normalized images from the gallery and the probe sets were 
projected onto a lOO-dimensional eigenspace similar to that shown in Figure 3 and 
a nearest-neighbor rule based on a Euclidean distance measure was used to match 
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Figure 3: Standard Eigenfaces. 

(b) 
Figure 4: "Dual" Eigenfaces: (a) Intrapersonal, (b) Extrapersonal 

each probe image to a gallery image. We note that this method corresponds to 
a generalized template-matching method which uses a Euclidean norm measure of 
similarity which is, however, restricted to the principal subspace of the data. The 
rank-l recognition rate obtained with this method was found to be 84%. 

4.2 Bayesian Matching 

For our probabilistic algorithm, we first gathered training data by computing 
the intensity differences for a training subset of 74 intrapersonal differences (by 
matching the two views of every individual in the gallery) and a random subset 
of 296 extrapersonal differences (by matching images of different individuals in the 
gallery), corresponding to the classes fh and OE, respectively, and performing a 
separate PCA analysis on each. 

We note that the two mutually exclusive classes Of and OE correspond to a 
"dual" set of eigenfaces as shown in Figure 4. Note that the intrapersonal 
variations shown in Figure 4-(a) represent subtle variations due mostly to expression 
changes (and lighting) whereas the extrapersonal variations in Figure 4-(b) are more 
representative of general eigenfaces which code variations such as hair color, facial 
hair and glasses. These extrapersonal eigenfaces are qualitatively similar to the 
standard normalized intensity eigenfaces shown in Figure 3. 

We next computed the likelihood estimates P(~IO[) and P(~IOE) using the PCA­
based method [7, 8], using subspace dimensions of M[ = 10 and ME = 30 for Of and 
OE, respectively. These density estimates were then used with a default setting of 
equal priors, P(O[) = P(OE), to evaluate the a posteriori intrapersonal probability 
P(O[I~) for matching probe images to those in the gallery. Therefore, for each 
probe image we computed probe-to-gallery differences and sorted the matching 
order, this time using the a posteriori probability P(~hl~) as the similarity measure. 
This probabilistic ranking yielded an improved rank-1 recognition rate of 90% . 
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Figure 5: Cumulative recognition rates for frontal FAjFB views for the competing 
algorithms in the FERET 1996 test. The top curve (labeled "MIT Sep 96") corresponds to 
our Bayesian matching technique. Note that second placed is standard eigenface matching 
(labeled "MIT Mar 95"). 

4.3 The 1996 FERET Competition 

Our Bayesian approach to recognition has yielded even more significant improve­
ment over simple eigenface techniques with very large face databases. The 
probabilistic similarity measure was tested in the September 1996 ARPA FERET 
face recognition competition and yielded a surprising 95% recognition accuracy (on 
nearly 1200 individuals) making it the top-performing system by a typical margin 
of 10-20% over the other competing algorithms [11] (see Figure 5). A comparison 
between standard eigenfaces and the Bayesian method from this test shows a 10% 
gain in performance afforded by the new similarity measure. Thus we note that, in 
this particular case, the probabilistic similarity measure has effectively halved the 
error rate of eigenface matching. 

Note that we can also use the simplified similarity measure based on the intraper­
sonal eigenfaces for a maximum likelihood (ML) matching technique using 

S' = p(~lnI) (7) 

instead of the maximum a posteriori (MAP) approach defined by Equation 2. 
Although this simplified measure has not been officially FERET tested, our own 
internal experiments with a database of size 2000 have shown that using S' instead 
of S results in only a minor (2-3%) deficit in the recognition rate while at the same 
time cutting the computational cost by a further factor of 2. 

5 Conclusions 

The performance advantage of our probabilistic matching technique has been 
demonstrated using both a small database (internally tested) as well as a large 
(800+) database with an independent double-blind test as part of ARPA's Septem­
ber 1996 "FERET" competition, in which Bayesian similarity out-performed all 
competing algorithms (at least one of which was using an LDA/Fisher type method). 
We believe that these results clearly demonstrate the superior performance of 
probabilistic matching over eigenface, LDA/Fisher and other existing techniques. 
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The results obtained with the simplified ML similarity measure (5' in Eq. 7) 
suggest a computationally equivalent yet superior alternative to standard eigenface 
matching. In other words, a likelihood similarity based on the intrapersonal density 
p(~lnI) alone is far superior to nearest-neighbor matching in eigenspace while 
essentially requiring the same number of projections. For completeness (and a 
slightly better performance) however, one should use the a posteriori similarity 5 
in Eq. 2, at twice the computational cost of standard eigenfaces. 

This probabilistic framework is particularly advantageous in that the intra/extra 
density estimates explicitly characterize the type of appearance variations which 
are critical in formulating a meaningful measure of similarity. For example, the 
deformations corresponding to facial expression changes (which may have high 
image-difference norms) are, in fact, irrelevant when the measure of similarity is to 
be based on identity. The subspace density estimation method used for representing 
these classes thus corresponds to a learning method for discovering the principal 
modes of variation important to the classification task. 
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