
Global Optimisation of Neural Network
Models Via Sequential Sampling

J oao FG de Freitas
Cambridge University

Engineering Department
Cambridge CB2 1PZ England

jfgf@eng.cam.ac.uk
[Corresponding author]

Mahesan Niranjan
Cambridge University

Engineering Department
Cambridge CB2 1PZ England

niranjan@eng.cam.ac.uk

Arnaud Doucet
Cambridge University

Engineering Department
Cambridge CB2 1PZ England

ad2@eng.cam.ac.uk

Andrew H Gee
Cambridge University

Engineering Department
Cambridge CB2 1PZ England

ahg@eng.cam.ac.uk

Abstract

We propose a novel strategy for training neural networks using se
quential sampling-importance resampling algorithms. This global
optimisation strategy allows us to learn the probability distribu
tion of the network weights in a sequential framework. It is well
suited to applications involving on-line, nonlinear, non-Gaussian or
non-stationary signal processing.

1 INTRODUCTION

This paper addresses sequential training of neural networks using powerful sampling
techniques. Sequential techniques are important in many applications of neural net
works involving real-time signal processing, where data arrival is inherently sequen
tial. Furthermore, one might wish to adopt a sequential training strategy to deal
with non-stationarity in signals, so that information from the recent past is lent more
credence than information from the distant past. One way to sequentially estimate
neural network models is to use a state space formulation and the extended Kalman
filter (Singhal and Wu 1988, de Freitas, Niranjan and Gee 1998). This involves local
linearisation of the output equation, which can be easily performed, since we only
need the derivatives of the output with respect to the unknown parameters. This
approach has been employed by several authors, including ourselves.

Global Optimisation of Neural Network Models via Sequential Sampling 4]]

However, locallinearisation leading to the EKF algorithm is a gross simplification of
the probability densities involved. Nonlinearity of the output model induces multi
modality of the resulting distributions. Gaussian approximation of these densities
will loose important details. The approach we adopt in this paper is one of sampling.
In particular, we discuss the use of 'sampling-importance resampling' and 'sequential
importance sampling' algorithms, also known as particle filters (Gordon, Salmond
and Smith 1993, Pitt and Shephard 1997), to train multi-layer neural networks.

2 STATE SPACE NEURAL NETWORK MODELLING

We start from a state space representation to model the neural network's evolution
in time. A transition equation describes the evolution of the network weights, while
a measurements equation describes the nonlinear relation between the inputs and
outputs of a particular physical process, as follows:

Wk+l = Wk +dk
Yk = g(Wk, Xk) + Vk

(1)
(2)

where (Yk E lRO) denotes the output measurements, (Xk E !R<i) the input measure
ments and (Wk E lRm) the neural network weights. The measurements nonlinear
mapping g(.) is approximated by a multi-layer perceptron (MLP). The measure
ments are assumed to be corrupted by noise Vk. In the sequential Monte Carlo
framework, the probability distribution of the noise is specified by the user. In
our examples we shall choose a zero mean Gaussian distribution with covariance
R. The measurement noise is assumed to be uncorrelated with the network weights
and initial conditions.

We model the evolution of the network weights by assuming that they depend
on the previous value Wk and a stochastic component dk. The process noise dk
may represent our uncertainty in how the parameters evolve, modelling errors or
unknown inputs. We assume the process noise to be a zero mean Gaussian process
with covariance Q, however other distributions can also be adopted. This choice of
distributions for the network weights requires further research. The process noise
is also assumed to be uncorrelated with the network weights.

The posterior density p(WkIYk), where Yk = {Yl, Y2, "', Yk} and Wk =
{Wl, W2, "', Wk}, constitutes the complete solution to the sequential estima
tion problem. In many applications, such as tracking, it is of interest to estimate
one of its marginals, namely the filtering density p(wkIYk). By computing the fil
tering density recursively, we do not need to keep track of the complete history of
the weights. Thus, from a storage point of view, the filtering density turns out
to be more parsimonious than the full posterior density function. IT we know the
filtering density of the network weights, we can easily derive various estimates of
the network weights, including centroids, modes, medians and confidence intervals.

3 SEQUENTIAL IMPORTANCE SAMPLING

In the sequential importance sampling optimisation framework, a set of represen
tative samples is used to describe the posterior density function of the network
parameters. Each sample consists of a complete set of network parameters. More
specifically, we make use of the following Monte Carlo approximation:

N

p(WkIYk) = ~ L 6(Wk - W~i))
i=l

412 1. F G. de Freitas, M. Niranjan, A. Doucet and A. H. Gee

where W~i) represents the samples used to describe the posterior density and 6(.)
denotes the Dirac delta function. Consequently, any expectations of the form:

E[A(Wk)] = ! !k(Wk)p(WkIYk)dWk

may be approximated by the following estimate:

N

E[jk(Wk)] ~ ~ LA(W~i»
i=l

where the samples W~i) are drawn from the posterior density function. Typically,
one cannot draw samples directly from the posterior density. Yet, if we can draw
samples from a proposal density function 7r(WkIYk), we can transform the expecta
tion under p(WkIYk) to an expectation under 7r(WkIYk) as follows:

! p(WkIYk)
E[A(Wk)] = !k(Wk) 7r(WkIYk) 7r(WkIYk)dWk

J A (Wk)qk (Wk)7r(WkIYk)dWk
J qk (Wk)7r(Wk IYk)dWk

E,.. [qk (Wk)!k(Wk)]
E,..[qk(Wk)]

where the variables qk(Wk) are known as the unnormalised importance ratios:

p(YkIWk)p(Wk) qk = =--:...-:..:-=-:-~,-:-....::..

7r(WkIYk)
(3)

Hence, by drawing samples from the proposal function 7r(.), we can approximate
the expectations of interest by the following estimate:

N (") (")
liN Li=l !k(Wk')qk(Wk')

N (")
liN Li=l qk(Wk')

N

L !k(W~i»qk(W~i)
i=l

where the normalised importance ratios tiii) are given by:

C i)
-Ci) _ qk
qk - "N (j)

L..Jj=l qk

(4)

It is not difficult to show (de Freitas, Niranjan, Gee and Doucet 1998) that, if we
assume w to be a hidden Markov process with initial density p(wo) and transition
density p(wklwk-l), various recursive algorithms can be derived. One of these
algorithms (HySIR), which we derive in (de Freitas, Niranjan, Gee and Doucet
1998), has been shown to perform well in neural network training. Here we extended
the algorithm to deal with multiple noise levels. The pseudo-code for the HySIR
algorithm with EKF updating is as followsl :

1 We have made available the software for the implementation of the HySIR algorithm
at the following web-site: http://svr-vwv.eng.cam.ac.ukrjfgf/ softvare . html .

Global Optimisation of Neural Network Models via Sequential Sampling 413

1. INITIALISE NETWORK WEIGHTS (k=O):

2. For k = 1"", L

(a) SAMPLING STAGE:
For i = 1,···,N

• Predict via the dynamics equation:

A (i) _ (i) + d(i)
W k+1 - wk k

where d~i) is a sample from p(dk) (N(O, Qk) in our case).
• Update samples with the EKF equations.

• Evaluate the importance ratios:

qi11 = qii)p(Yk+1Iw~iL) = q~) N(g(Xk+1, W~11)' Rk)

• Normalise the importance ratios:

(b) RESAMPLING STAGE:
For i = 1,·· · ,N
If Nell ~ Threshold:

(i) _ A (i)
• w k+1 - W k +1

(i) _ A (i)
• PH1 - Pk+1

Q*(i) _ Q*(i)
• k+1 - k+1

Else

• Resample new
(i) _ A (j)

• W k+1 - W k +1 ,
(i) _ 1

• qk+l - N

where KH1 is known as ~he Kalman gain matrix, Imm denotes the identity matrix of
size m x m, and R* and Q* are two tuning parameters, whose roles are explained in
detail in (de Freitas, Niranjan and Gee 1997). G represents the Jacobian matrix and,
strictly speaking, Pk is an approximation to the covariance matrix of the network
weights. The resampling stage is used to eliminate samples with low probability
and multiply samples with high probability. Various authors have described efficient
algorithms for accomplishing this task in O(N) operations (Pitt and Shephard 1997,
Carpenter, Clifford and Fearnhead 1997, Doucet 1998).

414 J. F G. de Freitas, M. Niranjan, A. Doucet and A. H. Gee

4 EXPERlMENT

To assess the ability of the hybrid algorithm to estimate time-varying hidden param
eters, we generated input-output data from a logistic function followed by a linear
scaling and a displacement as shown in Figure 1. This simple model is equivalent
to an MLP with one hidden neuron and an output linear neuron. We applied two
Gaussian (N(O, 10)) input sequences to the model and corrupted the weights and
output values with Gaussian noise (N(O, 1 x 10-3) and N(O, 1 x 10-4) respectively).
We then trained a second model with the same structure using the input-output

y

Figure 1: Logistic function with linear scaling and displacement used in the ex
periment. The weights were chosen as follows: wl(k) = 1 + k/100, w2(k) =
sin(0.06k) - 2, w3(k) = 0.1, w4(k) = 1, ws(k) = -0.5.

data generated by the first model. In so doing, we chose 100 sampling trajectories
and set R to 10, Q to 1 X 10-3155 , the initial weights variance to 5, Po to 100155 ,

R* to 1 X 10-5• The process noise parameter Q* was set to three levels: 5 x 10-3,
1 X 10-3 and 1 x 10-10, as shown in the plot of Figure 2 at time zero. In the training

20

,s

'20

Samples

Figure 2: Noise level estimation with the HySIR algorithm.

phase, of 200 time steps, we allowed the model weights to vary with time. During
this phase, the HySIR algorithm was used to track the input-output training data
and estimate the latent model weights. In addition, we assumed three possible noise
variance levels at the begining of the training session. After the 200-th time step,
we fixed the values of the weights and generated another 200 input-output data
test sets from the original model. The input test data was then fed to the trained
model, using the weights values estimated at the 200-th time step. Subsequently,

Global Optimisation of Neural Network Models via Sequential Sampling 415

the output prediction of the trained model was compared to the output data from
the original model to assess the generalisation performance of the training process.
As shown in Figure 2, the noise level of the trajectories converged to the true value
(1 x 10-3). In addition, it was possible to track the network weights and obtain
accurate output predictions as shown in Figures 3 and 4.

" 3.5
....

3 3

: .: :/ "" s a.
'[2.5 S 2

0 S
Qi 0 2

/ 1/1 1 Qi . . .
Cl 1/11 .5
C

~ "E 0
"~ 1 . . - .

~ -1 0.5 ~ . .. - .

-2 0
-2 0 2 " 0 1 2

Output prediction Output prediction

Figure 3: One step ahead predictions during the training phase (left) and stationary
predictions in the test phase (right).

E 100
III
C) 50 .s 2 II)

I~

0 W2 Time

"
.!!!
-§,2

'm
~

.::L. 0
0
.!
II) -2

Z

-4
0 20 40 60 80 100 120 140 160 180 200

Time

Figure 4: Weights tracking performance with the HySIR algorithm. As indicated
by the histograms of W2, the algorithm performs a global search in parameter space.

416 1. F G. de Freitas, M. Niranjan, A. Doucet and A. H. Gee

5 CONCLUSIONS

In this paper, we have presented a sequential Monte Carlo approach for training
neural networks in a Bayesian setting. In particular, we proposed an algorithm
(HySIR) that makes use of both gradient and sampling information. HySIR can be
interpreted as a Gaussian mixture filter, in that only a few sampling trajectories
need to be employed. Yet, as the number of trajectories increases, the computational
requirements increase only linearly. Therefore, the method is also suitable as a
sampling strategy for approximating multi-modal distributions. Further avenues
of research include the design of algorithms for adapting the noise covariances R
and Q, studying the effect of different noise models for the network weights and
improving the computational efficiency of the algorithms.

ACKNOWLEDGEMENTS

Joao FG de Freitas is financially supported by two University of the Witwatersrand
Merit Scholarships, a Foundation for Research Development Scholarship (South
Africa), an ORS award and a Trinity College External Studentship (Cambridge).

References

Carpenter, J., Clifford, P. and Fearnhead, P. (1997). An improved particle filter for
non-linear problems, Technical report, Department of Statistics, Oxford Uni
versity, England. Available at http://www.stats.ox.ac.ukrclifford/index.htm.

de Freitas, J. F. G., Niranjan, M. and Gee, A. H. (1997). Hierarchichal Bayesian
Kalman models for regularisation and ARD in sequential learning, Tech
nical Report CUED/F-INFENG/TR 307, Cambridge University, http://svr
www.eng.cam.ac.uk/-jfgf.

de Freitas, J. F. G., Niranjan, M. and Gee, A. H. (1998). Regularisation in sequential
learning algorithms, in M. I. Jordan, M. J. Kearns and S. A. Solla (eds),
Advances in Neural Information Processing Systems, Vol. 10, MIT Press.

de Freitas, J. F. G., Niranjan, M., Gee, A. H. and Doucet, A. (1998). Sequen
tial Monte Carlo methods for optimisation of neural network models, Tech
nical Report CUED/F-INFENG/TR 328, Cambridge University, http://svr
www.eng.cam.ac.uk/-jfgf.

Doucet, A. (1998). On sequential simulation-based methods for Bayesian filtering,
Technical Report CUED/F-INFENG/TR 310, Cambridge University. Avail
able at http://www.stats.bris.ac.uk:81/MCMC/pages/list.html.

Gordon, N. J ., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach
to nonlinear/non-Gaussian Bayesian state estimation, lEE Proceedings-F
140(2): 107-113.

Pitt, M. K. and Shephard, N. (1997). Filtering via simulation: Auxiliary particle
filters, Technical report, Department of Statistics, Imperial College of London,
England. Available at http://www.nuff.ox.ac.uk/economics/papers.

Singhal, S. and Wu, L. (1988). Training multilayer perceptrons with the extended
Kalman algorithm, in D. S. Touretzky (ed.), Advances in Neural Information
Processing Systems, Vol. 1, San Mateo, CA, pp. 133-140.

