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Inference is a key component in learning probabilistic models from par­
tially observable data. When learning temporal models, each of the 
many inference phases requires a traversal over an entire long data se­
quence; furthermore, the data structures manipulated are exponentially 
large, making this process computationally expensive. In [2], we describe 
an approximate inference algorithm for monitoring stochastic processes, 
and prove bounds on its approximation error. In this paper, we apply this 
algorithm as an approximate forward propagation step in an EM algorithm 
for learning temporal Bayesian networks. We provide a related approxi­
mation for the backward step, and prove error bounds for the combined 
algorithm. We show empirically that, for a real-life domain, EM using 
our inference algorithm is much faster than EM using exact inference, 
with almost no degradation in quality of the learned model. We extend 
our analysis to the online learning task, showing a bound on the error 
resulting from restricting attention to a small window of observations. 
We present an online EM learning algorithm for dynamic systems, and 
show that it learns much faster than standard offline EM. 

1 Introduction 

In many real-life situations, we are faced with the task of inducing the dynamics of a 
complex stochastic process from limited observations about its state over time. Until now, 
hidden Markov models (HMMs) [12] have played the largest role as a representation for 
learning models of stochastic processes. Recently, however, there has been increasing 
use of more structured models of stochastic processes, such as factorial HMMs [8] or 
dynamic Bayesian networks (DBNs) [4]. Such structured decomposed representations 
allow complex processes over a large number of states to be encoded using a much smaller 
number of parameters, thereby allowing better generalization from limited data [8, 7, 13]. 
Furthermore, the natural structure of such processes makes it easier for a human expert to 
incorporate prior knowledge about the domain structure into the model, thereby improving 
its inductive bias. 
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Both parameter and structure learning algorithms for dynamic models [12, 7] use proba­
bilistic inference as a crucial component. An inference routine is called multiple times in 
order to "fill in" missing data with its expected value according to the current hypothesis; 
the resulting expected sufficient statistics are then used to construct a new hypothesis. The 
inference step is used many times, each of which iterates over the entire sequence. This 
behavior is problematic in two important respects. First, in many settings, we may not 
have access to the entire sequence in advance. Second, the various structured representa­
tions of stochastic processes do not admit an effective inference procedure. The messages 
propagated by exact inference algorithms include an entry for each possible state of the 
system; the number of states is exponential in the size of our model, rendering this type of 
computation infeasible in all but the smallest of problems. In this paper, we describe and 
analyze an approach that helps us address both of these problems. 

In [2], we proposed a new approach to approximate inference in stochastic processes, where 
approximate distributions that admit compact representation are maintained and propagated. 
Our approach can achieve exponential savings over exact inference for DBNs. We showed 
empirically that, for a practical DBN [6], our approach results in a factor 15-20 reduction 
in running time at only a small cost in accuracy. We also proved that the accumulated 
error arising from the repeated approximations remains bounded indefinitely over time. 
This result relied on an analysis showing that transition through a stochastic process is a 
contraction for relative entropy (KL-divergence) [3]. 

Here, we apply this approach to the parameter learning task. This application is not 
completely straightforward, since our algorithm of [2] and the associated analysis only 
applied to the forward propagation of messages, whereas the inference used in learning 
algorithms require propagation of information from the entire sequence. In this paper, 
we provide an analysis of the error accumulated by an approximate inference process in 
the backward propagation phase of inference. This analysis is quite different from the 
contraction analysis for the forward phase. We combine these two results to prove bounds 
on the error of the expected sufficient statistics relayed to the learning algorithm at each 
stage. We then present empirical results for a practical DBN, illustrating the performance 
of this approximate learning algorithm. We show that speedups of 15-20 can be obtained 
easily, with no discern able loss in the quality of the learned hypothesis. 

Our theoretical analysis also suggests a way of dealing with the problematic need to reason 
about the entire sequence of temporal observations at once. Our contraction results show 
that it is legitimate to ignore observations that are very far in the future. Thus, we can 
compute a very accurate approximation to the backward message by considering only a 
small window of observations in the future. This idea leads to an efficient online learning 
algorithm. We show that it converges to a good hypothesis much faster than the standard 
offline EM algorithm, even in settings favorable to the latter. 

2 Preliminaries 

A model for a dynamic system is specified as a tuple (B,8) where B represents the 
qualitative structure of the model, and 8 the appropriate parameterization. In a DBN, the 
instantaneous state of a process is specified in terms of a set of variables Xl, .. . , X n . Here, 

B encodes a network fragment which specifies, for each time t variable Xkt), the set of 

parents Parents(Xkt )); an example fragment is shown in Figure l(a). The parameters 8 

define for each Xkt ) a conditional probability table P[Xkt) I Parents(Xkt ) )]. For simplicity, 
we assume that the variables are partitioned into state variables, which are never observed, 
and observation variables, which are always observed. We also assume that the observation 
variables at time t depend only on state variables at time t. We use T to denote the transition 
matrix over the state variables in the stochastic process; i.e., G,j is the transition probability 
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from state Si to state Sj. Note that this concept is well-defined even for a DBN, although in 
that case, the matrix is represented implicitly via the other parameters. We use a to denote 
the observation matrix; i.e., Oi,j is the probability of observing response rj in state Si. 

Our goal is to learn the model for stochastic process from partially observable data. To 
simplify our discussion, we focus on the problem of learning parameters for a known 
structure using the EM (Expectation Maximization) algorithm [5]; most of our discussion 
applies equally to other contexts (e.g., [7]). EM is an iterative procedure that searches over 
the space of parameter vectors for one which is a local maximum of the likelihood function­
the probability of the observed data D given 8. We describe the EM algorithm for the task 
of learning HMMs; the extension to DBNs is straightforward. The EM algorithm starts with 
some initial (often random) parameter vector 8, which specifies a current estimate of the 
transition and observation matrices of the process T and 6. The EM algorithm computes 
the expected sufficient statistics (ESS) for D, using T and 6 to compute the expectation. 
In the case of HMMs, the ESS are an average, over t, ofthe joint distribution~ t/J(t) over the 
variables at time t - I and the variables at time t. A new parameter vector 8' can then be 
computed from the ESS by a simple maximum likelihood step. These two steps are iterated 
until an appropriate stopping condition is met. 

The t/J(t) for the entire sequence can be computed by a simple forward-backward algorithm. 

Let r(t) be the response observed at time t, and let 0rCI) be its likelihood vector (Or; (i) ~ 
Oi,j). Theforwardmessagesa(t) are propagated as follows: a(t) ex (a(t-I) ·T) X OrCI), 

where x is the outer product. The backward messages p(t) are propagated as p(t) ex 
(T· (p(t+l) x 0r(t+I) )')'. The estimated belief at time t is now simply a(t) x p(t) (suitably 
renormalized); similarly, the joint belief t/J(t) is proportional to (a(t-I) x p(t) x T x Or(t»). 

This message passing algorithm has an obvious extension to DBNs. Unfortunately, it is 
feasible only for very small DBNs. Essentially, the messages passed in this algorithm have 
an entry for every possible state at time t; in a DBN, the number of states is exponential 
in the number of state variables, rendering such an explicit representation infeasible in 
most cases. Furthermore even highly structured processes do not admit a more compact 
representation of these messages [8, 2]. 

3 Belief state approximation 

In [2], we described a new approach to approximate inference in dynamic systems, which 
avoids the problem of explicitly maintaining distributions over large spaces. We maintain 
our belief state (distribution over the current state) using some computationally tractable 
representation of a distribution. We propagate the time t approximate belief state through 
the transition model and condition it on our evidence at time t + 1. We then approximate the 
resulting time t + I distribution using one that admits a compact representation, allowing 
the algorithm to continue. We also showed that the errors arising from the repeated 
approximation do not accumulate unboundedly, as the stochasticity of the process attenuates 
their effect. 

In particular, for DBNs we considered belief state approximations where certain subsets of 
less correlated variables are grouped into distinct clusters which are approximated as being 
independent. In this case, the approximation at each step consists of a simple projection 
onto the relevant marginals, which are used as a factored representation of the time t + 1 
approximate belief state. This algorithm can be implemented efficiently using the clique 
tree algorithm [10]. To compute a(t+ I) from a(t), we generate a clique tree over these two 
time slices of the DBN, ensuring that both the time t and time t + 1 clusters appear as a 
subset of some clique. We then incorporate a(t) into the time t cliques; a(t+I) is obtained 
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by calibrating the tree (doing inference) and reading off the relevant marginals from the tree 
(a(HI) is implicitly defined as their product). 

These results are directly applicable to the learning task, as the belief state is the forward 
message in the forward-backward algorithm. Thus, we can apply this approach to the 
forward step, with the guarantee that the approximation will not lead to a big difference 
in the ESS. However, this technique does not resolve our computational problems, as the 
backward propagation phase is as expensive as the forward phase. We can apply the same 
idea to the backward propagation, i.e., we maintain and propagate a compactly represented 

approximate backward message p(t). The implementation of this idea is a simple extension 

f I 'h f f d 'r (3-(t)f (3-(HI) . I' o our a gont m or orwar messages . .10 compute rom , we SImp y Incorporate 

p(t+I) into our clique tree over these two time slices, then read off the relevant marginals 

for computing p(t) . 

However, extending the analysis is not as straightforward. It is not completely straightfor­
ward to apply the techniques of [2] to get relative error bounds for the backward message. 
Furthennore, even if we have bounds on relative entropy error of both the forward and 
backward messages, bounds for the error of the ..p(t) do not follow. The solution turns out to 
use an alternative notion of distance, which combines additively under Bayesian updating, 
albeit at the cost of weaker contraction rates. 

Definition 1 Let P and P be two positive vectors of same dimension. Their projective 

distance is defined as DProj[p, p] ~ maxi,i' In[(pi . Pi' )/(Pi' . Pi)]' 

We note that the projective distance is a (weak) upper bound on the relative entropy. 

Based on the results of [1], we show that projective distance contracts when messages are 
propagated through the stochastic transition matrix, in either direction. Of course, the rate 
of contraction depends on ergodicity properties ofthe matrix: 

Lemma 2 Let k = min{i,j,i',j':'T,,J''7i',j',tO} V(Ti,j' . Ti',j)/(Ti ,j . Ti',j'), and define 

"'T ~ 2 · k/(I + k). Then DProj[a(t),a(t)] ::; (I - "'T) . DProj[a(t-I),a(t-I)], and 

D proj [{3(t),p(t)]::; (I - "'T)' D PrOj [{3(t+I),p(HI)]. 

We can now show that, if our approximations do not introduce too large an error, then the 
expected sufficient statistics will remain close to their correct value. 

Theorem 3 Let S be the ESS computed via exact inference, and let 5 be its approximation. 
If the forward (backward) approximation step is guaranteed to introduce at most c (6) 
projective error, then DProj[S, 5] ::; (c + 8) / "'T. Therefore DkdS 115] ::; (c + 8) / "'T· 

Note that even small fluctuations in the sufficient statistics can cause the EM algorithm to 
reach a different local maximum. Thus, we cannot analytically compare the quality of the 
resulting algorithms. However, as our experimental results show, there is no divergence 
between exact EM and aproximate EM in practice. 

We tested our algorithms on the task of learning the parameters for the BAT network shown 
in Figure 1 (a), used for traffic monitoring [6]. The training set was a fixed sequence 
of 1000 slices, generated from the correct network distribution. Our test metric was the 
average log-likelihood (per slice) of a fixed test sequence of 50 slices. All experiments 
were conducted using three different random starting points for the parameters (the same 
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Figure I: (a) The BAT DBN. (b) Structural approximations for batch EM. 

in all the experiments). We ran EM with different types of structural approximations, and 
evaluated the quality of the model after each iteration of the algorithm. We used four 
different structural approximations: (i) exact propagation; (ii) a 5+5 clustering of the ten 
state variables; (iii) a 3+2+4+ I clustering; (iv) each variable in a separate cluster. The results 
for one random starting point are shown on Figure 1 (b). As we can see, the impact of (even 
severe) structural approximation on learning accuracy is negligible. In all of the runs, the 
approximate algorithm tracked the exact one very closely, and the largest difference in the 
peak log-likelihood was at most 0.04. This phenomenon is rather remarkable, especially 
in view of the substantial savings caused by the approximations: on a Sun Ultra II, the 
computational cost of learning was 138 min/iteration in the exact case, vs. 6 min/iteration 
for the 5+5 clustering. and less than 5 min/iteration for the other two. 

4 Online learning 

Our analysis also gives us the tools to address another important problem with learning 
dynamic models: the need to reason about the entire temporal sequence at once. One 
consequence of our contraction result is that the effect of approximations done far away 
in the sequence decays exponentially with the time difference. In particular, the effect 
of an approximation which ignores observations that are far in the future is also limited. 
Therefore. if we do inference for a time slice based on a small window of observations into 
the future, the result should still be fairly accurate. More precisely. assume that we are at 
time t and are considering a window of size w . We can view the uniform message as a very 
bad approximation to p(t+w). But as we propagate this approximate backward message 
from t + w to t, the error will decay exponentially with w. 

Based on these insights, we experimented with various online algorithms that use a small 
window approximation. Our online algorithms are based on the approach of [11], in 
which ESS are updated with an exponential decay every few data cases; the parameters 
are then updated correspondingly. The main problem with frequent parameter updates in 
the online setting is that they require a recomputation of the messages computed using the 
old parameters. For long sequences, the computational cost of such a scheme would be 
prohibitive. In our algorithms, we simply leave the forward messages unchanged. under 
the assumption that the most recent time slices used parameters that are very close to the 
new ones. Our contraction result tells us that the use of old parameters far back in the 
sequence has a negligible effect on the message. We tried several schemes for the update 
of the backward messages. In the dynamic-JOOO approach, we use a backward message 
computed over 1000 slices, with the closer messages recomputed very frequently as the 
parameters are changed. based on cached messages that used older parameters. The 8 
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closest messages are updated every parameter update, the next 16 every other update, etc. 
This approach is the closest realistic alternative to a full update of backward messages. In 
the static-JOOO approach, we use a very long window (1000 slices), but do not recompute 
messages; when the window ends, we use the current parameters to compute the messages 
for the entire next window. In the static-4 approach, we do the same, but use a very short 
window of 4 slices. Finally, in the static-O approach, there is no lookahead at all; only the 
past and present evidence is used to compute the joint beliefs. The latter case is often used 
(e.g., in the context of Kalman filters [9]) for online learning of the process parameters. 
To minimize the computational burden, all tests were conducted using the 5+5 structural 
approximation. The running time for the various algorithms are: 0.4 sec/slice for batch 
EM; 1.4 for dynamic-I 000; 0.5 for static-I 000 and for static-4; and 0.3 for static-a. 

We evaluated these temporal approximations both in an online and in a batch setting. In the 
batch experiments, we used the same I OOO-step sequence used above. The results are shown 
in Figure 2(a). We see that the dynamic-I 000 algorithm reaches the same quality model as 
standard batch EM, but converges sooner. As in [11], the difference is due to the frequent 
update of the sufficient statistics based on more accurate parameters. More interestingly, 
we see that the static-4 algorithm, which uses a lookahead of only 4, also reaches the same 
accuracy. Thus, our approximation-ignoring evidence far in the future-is a good one, 
even for a very weak notion of "far". By contrast, we see that the quality reached by the 
static-O approach is significantly lower: the sufficient statistics used by the EM algorithm 
in this case are consistently worse, as they ignore all future evidence. Thus, in this network, 
a window of size 4 is as good as full forward-backward, whereas one of size a is clearly 
worse. Our online learning experiments, shown in Figure 2(b), used a single long sequence 
of 40,000 slices. Again, we see that the static-4 approach is almost indistinguishable in 
terms of accuracy from the dynamic-lOOO approach, and that both converge more rapidly 
than the static-I 000 algorithm. Thus, frequent updates over short windows are better than 
infrequent updates over longer ones. Finally, we see again that the static-O algorithm 
converges to a hypothesis of much lower quality. Thus, even a very short window allows 
rapid convergence to the "best possible" answer, but a window of size a does not. 

5 Conclusion and extensions 

In this paper, we suggested the use of simple structural approximations in the inference 
algorithm used in an E-step. Our results suggest that even severe structural approximations 
have almost negligible effects on the accuracy of learning. The advantages of approximate 
inference in the learning setting are even more pronounced than in the inference task [2], 
as the small errors caused by approximation are negligible compared to the larger ones 
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induced by the learning process. Our techniques provide a new and simple approach for 
learning structured models of complex dynamic systems, with the resulting advantages of 
generalization and the ability to incorporate prior knowledge. We also presented a new 
algorithm for the online learning task, showing that we can learn high-quality models using 
a very small time window of future observations. 

The work most comparable to ours is the variational approach to approximate inference 
applied to learning factorial HMMs [8]. While we have not done a direct empirical 
comparison, it seems likely that the variational approach would work better for densely 
connected models, whereas our approach would dominate for structured models such as the 
one in our experiments. Indeed, for this model, our algorithms track exact EM so closely 
that any significant improvement in accuracy is unlikely. Our algorithm is also simpler and 
easier to implement. Most importantly, it is applicable to the task of online learning. 

The most obvious extension to our results is an integration of our ideas with structure 
learning algorithm for DBNs [7] . We believe that the resulting algorithm will be able to 
learn structured models for real-life complex systems. 
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