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We compare the ability of three exemplar-based memory models, each 
using three different face stimulus representations, to account for the 
probability a human subject responded "old" in an old/new facial mem­
ory experiment. The models are 1) the Generalized Context Model, 2) 
SimSample, a probabilistic sampling model, and 3) MMOM, a novel 
model related to kernel density estimation that explicitly encodes stim­
ulus distinctiveness. The representations are 1) positions of stimuli in 
MDS "face space," 2) projections of test faces onto the "eigenfaces" of 
the study set, and 3) a representation based on response to a grid of Gabor 
filter jets. Of the 9 model/representation combinations, only the distinc­
tiveness model in MDS space predicts the observed "morph familiarity 
inversion" effect, in which the subjects' false alarm rate for morphs be­
tween similar faces is higher than their hit rate for many of the studied 
faces. This evidence is consistent with the hypothesis that human mem­
ory for faces is a kernel density estimation task, with the caveat that dis­
tinctive faces require larger kernels than do typical faces. 

1 Background 

Studying the errors subjects make during face recognition memory tasks aids our under­
standing of the mechanisms and representations underlying memory, face processing, and 
visual perception. One way of evoking such errors is by testing subjects' recognition of 
new faces created from studied faces that have been combined in some way (e.g. Solso and 
McCarthy, 1981; Reinitz, Lammers, and Cochran 1992). Busey and Tunnicliff (submit­
ted) have recently examined the extent to which image-quality morphs between unfamiliar 
faces affect subjects' tendency to make recognition errors. 

Their experiments used facial images of bald males and morphs between these images (see 
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Figure 1: Three normalized morphs from the database. 
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Figure 1) as stimuli. In one study, Busey (in press) had subjects rate the similarity of all 
pairs in a large set of faces and morphs, then performed a multidimensional scaling (MDS) 
of these similarity ratings to derive a 6~dimensional "face space" (Valentine and Endo, 
1992). In another study, "Experiment 3" (Busey and Tunnicliff, submitted), 179 subjects 
studied 68 facial images, including 8 similar pairs and 8 dissimilar pairs, as determined in a 
pilot study. These pairs were included in order to study how morphs between similar faces 
and dissimilar faces evoke false alanns. We call the pair of images from which a morph are 
derived its "parents," and the morph itself as their "child." In the experiment's test phase, 
the subjects were asked to make new/old judgments in response to 8 of the 16 morphs, 20 
completely new distractor faces, the 36 non-parent targets and one of the parents of each of 
the 8 morphs. The results were that, for many of the morphlparent pairs, subjects responded 
"old" to the unstudied morph more often than to its studied parent. However, this effect (a 
morphfamiliarity inversion) only occurred for the morphs with similar parents. It seems 
that the similar parents are so similar to their "child" morphs that they both contribute 
toward an "old" (false alann) response to the morpho 

Researchers have proposed many models to account for data from explicit memory ex­
periments. Although we have applied other types of models to Busey and Tunnicliff's 
data with largely negative results (Dailey et al., 1998), in this paper, we limit discussion 
to exemplar-based models, such as the Generalized Context Model (Nosofsky, 1986) and 
SAM (Gillund and Shiffrin, 1984). These models rely on the assumption that subjects 
explicitly store representations of each of the stimuli they study. Busey and Tunnicliff ap­
plied several exemplar-based models to the Experiment 3 data, but none of these models 
have been able to fully account for the observed similar morph familiarity inversion with­
out positing that the similar parents are explicitly blended in memory, producing prototypes 
near the morphs. 

We extend Busey and Tunnicliff's (submitted) work by applying two of their exemplar 
models to additional image-based face stimulus representations, and we propose a novel 
exemplar model that accounts for the similar morphs' familiarity inversion. The results are 
consistent with the hypothesis that facial memory is a kernel density estimation (Bishop, 
1995) task, except that distinctive exemplars require larger kernels. Also, on the basis of 
our model, we can predict that distinctiveness with respect to the study set is the critical 
factor influencing kernel size, as opposed to a context-free notion of distinctiveness. We 
can easily test this prediction empirically. 

2 Experimental Methods 
2.1 Face Stimuli and Normalization 
The original images were 104 digitized 560x662 grayscale images of bald men, with con­
sistent lighting and background and fairly consistent position. The subjects varied in race 
and extent of facial hair. We automatically located the left and right eyes on each face using 
a simple template correlation technique then translated, rotated, scaled and cropped each 
image so the eyes were aligned in each image. We then scaled each image to 114x 143 to 
speed up image processing. Figure 1 shows three examples of the normalized morphs (the 
original images are copyrighted and cannot be published) . 
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2.2 Representations 

Positions in multidimensional face space Many researchers have used a multidimen­
sional scaling approach to model various phenomena in face processing (e.g. Valentine and 
Endo, 1992). Busey (in press) had 343 subjects rate the similarity of pairs of faces in the 
test set and performed a multidimensional scaling on the similarity matrix for 100 of the 
faces (four non-parent target faces were dropped from this analysis). The process resulted 
in a 6-dimensional solution with r2 = 0.785 and a stress of 0.13. In the MDS modeling 
results described below, we used the 6-dimensional vector associated with each stimulus as 
its representation. 

Principal component projections "Eigenfaces," or the eigenvectors of the covariance 
matrix for a set of face images, are a common basis for face representations (e.g. Turk and 
Pentland, 1991). We performed a principal components analysis on the 68 face images used 
in the study set for Busey and Tunnicliff's experiment to get the 67 non-zero eigenvectors 
of their covariance matrix. We then projected each of the 104 test set images onto the 30 
most significant eigenfaces to obtain a 30-dimensional vector representing each face. l 

Gabor filter responses von der Malsburg and colleagues have made effective use of 
banks of Gabor filters at various orientations and spatial frequencies in face recognition sys­
tems. We used one form of their wavelet (Buhmann, Lades, and von der Malsburg, 1990) at 
five scales and 8 orientations in an 8x8 square grid over each normalized face image as the 
basis for a third face stimulus representation. However, since this representation resulted 
in a 2560-dimensional vector for each face stimulus, we performed a principal components 
analysis to reduce the dimensionality to 30, keeping this representation's dimensionality the 
same as the eigenface representation's. Thus we obtained a 30-dimensional vector based 
on Gabor filter responses to represent each test set face image. 

2.3 Models 
The Generalized Context Model (GCM) There are several different flavors to the GCM. 
We only consider a simple sum-similarity form that will lead directly to our distinctiveness­
modulated density estimation model. Our version of GCM's predicted P(old), given a 
representation y of a test stimulus and representations x E X of the studied exemplars, is 

predy = a + {3 L e-c (dx •y )2 

xEX 

where a and {3linearly convert the probe's summed similarity to a probability, X is the set 
of representations of the study set stimuli; c is used to widen or narrow the width of the 
similarity function, and dx,y is either Ilx - yll, the Euclidean distance between x and y 
or the weighted Euclidean distance VLk Wk(Xk - Yk)2 where the "attentional weights" 
Wk are constants that sum to 1. Intuitively, this model simply places a Gaussian-shaped 
function over each of the studied exemplars, and the predicted familiarity of a test probe is 
simply the summed height of each of these surfaces at the probe's location. 

Recall that two of our representations, PC projection space and Gabor filter space, are 
30-dimensional, whereas the other, MDS, is only 6-dimensional. Thus allowing adaptive 
weights for the MDS representation is reasonable, since the resulting model only uses 8 
parameters to fit 100 points, but it is clearly unreasonable to allow adaptive weights in 
PC and Gabor space, where the resulting models would be fitting 32 parameters to 100 
points. Thus, for all models, we report results in MDS space both with and without adaptive 
weights, but do not report adaptive weight results for models in PC and Gabor space. 

SimSample Busey and Tunnicliff (submitted) proposed SimSample in an attempt to rem­
edy the GCM's poor predictions of the human data. It is related to both GCM, in that it 

1 We used 30 eigenfaces because with this number, our theoretical "distinctiveness" measure was 
best correlated with the same measure in MDS space. 
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uses representations in MDS space, and SAM (Gillund and Shiffrin, 1984), in that it in­
volves sampling exemplars. The idea behind the model is that when a subject is shown 
a test stimulus, instead of a summed comparison to all of the exemplars in memory, the 
test probe probabilistically samples a single exemplar in memory, and the subject responds 
"old" if the probe's similarity to the exemplar is above a noisy criterion. The model has 
a similarity scaling parameter and two parameters describing the noisy threshold function. 
Due to space limitations, we cannot provide the details of the model here. 

Busey and Tunnicliff were able to fit the human data within the SimS ample framework, 
but only when they introduced prototypes at the locations of the morphs in MDS space and 
made the probability of sampling the prototype proportional to the similarity of the parents. 
Here, however, we only compare with the basic version that does not blend exemplars. 

Mixture Model of Memory (MMOM) In this model, we assume that subjects, at study 
time, implicitly create a probability density surface corresponding to the training set. The 
subjects' probability of responding "old" to a probe are then taken to be proportional to the 
height of this surface at the point corresponding to the probe. The surface must be robust 
in the face of the variability or noise typically encountered in face recognition (lighting 
changes, perspective changes, etc.) yet also provide some level of discrimination support 
(i.e. even when the intervals of possible representations for a single face could overlap 
due to noise, some rational decision boundary must still be constructed). If we assume 
a Gaussian mixture model, in which the density surface is built from Gaussian "blobs" 
centered on each studied exemplar, the task is a form of kernel density estimation (Bishop, 
1995). 

We can fonnulate the task of predicting the human subjects' P( old) in this framework, then, 
as optimizing the priors and widths of the kernel functions to minimize the mean squared 
error of the prediction. However, we also want to minimize the number of free parameters 
in the model - parsimonious methods for setting the priors and kernel function widths 
potentially lead to more useful insights into the principles underlying the human data. If 
the priors and widths were held constant, we would have a simple two parameter model 
predicting the probability a subject responds "old" to a test stimulus y: 

I!x_~1!2 
predy = L oe- 2 .. 

xEX 
where a folds together the uniform prior and normalization constants, and (7 is the stan-
dard deviation of the Gaussian kernels. If we ignore the constants, however, this model 
is essentially the same as the version of the GCM described above. As the results section 
will show, this model cannot fully account for the human familiarity data in any of our 
representational spaces. 

To improve the model, we introduce two parameters to allow the prior (kernel function 
height) and standard deviation (kernel function width) to vary with the distinctiveness of the 
studied exemplar. This modification has two intuitive motivations. First, when humans are 
asked which of two parent faces a 50% morph is most similar to, if one parent is distinctive 
and the other parent is typical, subjects tend to choose the more distinctive parent (Tanaka et 
aI., submitted). Second, we hypothesize that when a human is asked to study and remember 
a set of faces for a recognition test, faces with few neighbors will likely have more relaxed 
(wider) discrimination boundaries than faces with many nearby neighbors. 

Thus in each representation space, for each studied face x, we computed d(x), the theoret­
ical distinctiveness of each face, as the Z-scored average distance to the five nearest studied 
faces. We then allowed the height and width of each kernel function to vary with d(x): 

_ I!x_yl!2 

predy = L 0(1 + cod(x»e 2("(l+c .. d(x»2 

xEX 
As was the case for GCM and SimSample, we report the results of using a weighted Eu-
clidean distance between y and x in MDS space only. 
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Model " MDS space I MDS + weights I PC projections I Gabor jets I 
GCM 0.1633 0.1417 0.1745 0.1624 
SimS ample 0.1521 0.1404 0.1756 0.1704 
MMOM 0.1601 0.1528 0.1992 0.1668 

Table 1: RMSE for the three models and three representations. Quality of fit for models 
with adaptive attentional weights are only reported for the low-dimensional representation 
("MDS + weights"). The baseline RMSE, achievable with a constant prediction, is 0.2044. 

2.4 Parameter fitting and model evaluation 
For each of the twelve combinations of models with face representations, we searched 
parameter space by simple hill climbing for the parameter settings that minimized the mean 
squared error between the model's predicted P(old) and the actual human P(old) data. 

We rate each model's effectiveness with two criteria. First, we measure the models' global 
fit with RMSE over all test set points. A model's RMSE can be compared to the baseline 
performance of the "dumbest" model, which simply predicts the mean human P(old) of 
0.5395, and achieves an RMSE of 0.2044. Second, we evaluate the extent to which a model 
predicts the mean human response for each of the six categories of test set stimuli: 1) non­
parent targets, 2) non-morph distractors, 3) similar parents, 4) dissimilar parents, 5) similar 
morphs, and 6) dissimilar morphs. If a model correctly predicts the rank ordering of these 
category means, it obviously accounts for the similar morph familiarity inversion pattern in 
the human data. As long as models do an adequate job of fitting the human data overall, as 
measured by RMSE, we prefer models that predict the morph familiarity inversion effect 
as a natural consequence of minimizing RMSE. 

3 Results 

Table 1 shows the global fit of each model/representation pair. The SimSample model in 
MDS space provides the best quantitative fit. GeM generally outperforms MMOM, indi­
cating that for a tight quantitative fit, having parameters for a linear transformation built 
into the model is more important than allowing the kernel function to vary with distinctive­
ness. Also of note is that the PC projection representation is consistently outperformed by 
both the Gabor jet representation and the MDS space representation. 

But for our purposes, the degree to which a model predicts the mean human responses for 
each of the six categories of stimuli is more important, given that it is doing a reasonably 
good job globally. Figure 2 takes a more detailed look at how well each model predicts 
the human category means. Even though SimSample in MDS space has the best global 
fit to the human familiarity ratings, it does not predict the familiarity inversion for similar 
morphs. Only the mixture model in weighted MDS space correctly predicts the morph 
familiarity effect. All of the other models underpredict the human responses to the similar 
morphs. 

4 Discussion 

The results for the mixture model are consistent with the hypothesis that facial memory is 
a kernel density estimation task, with the caveat that distinctive exemplars require larger 
kernels. Whereas true density estimation would tend to deemphasize outliers in sparse 
areas of the face space, the human data show that the priors and kernel function widths for 
outliers should actually be increased. Two potentially significant problems with the work 
presented here are first, we experimented with several models before finding that MMOM 
was able to predict the morph familiarity inversion effect, and second, we are fitting a single 
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Figure 2: Average actual/predicted responses to the faces in each category. Key: DP = 
Dissimilar parents; SM = Similar morphs; T = Non-parent targets; SP = Similar parents; 
DM = Dissimilar morphs; D = Distractors. 

experiment. The model thus must be carefully tested against new data, and its predictions 
empirically validated. 

Since a theoretical distinctiveness measure based on the sparseness of face space around an 
exemplar was sufficient to account for the similar morphs' familiarity inversion, we predict 
that distinctiveness with respect to the study set is the critical factor influencing kernel size, 
rather than context-free human distinctiveness judgments. We can easily test this prediction 
by having subjects rate the distinctiveness of the stimuli without prior exposure and then 
determine whether their distinctiveness ratings improve or degrade the model's fit. 

A somewhat disappointing (though not particularly surprising) aspect of our results is that 
the model requires a representation based on human similarity judgments. Ideally, we 
would prefer to provide an information-processing account using image-based representa­
tions like eigenface projections or Gabor filter responses. Interestingly, the efficacy of the 
image-based representations seems to depend on how similar they are to the MDS repre­
sentations. The PC projection representation performed the worst, and distances between 
pairs of PC representations had a correlation of 0.388 with the distances between pairs of 
MDS representations. For the Gabor filter representation, which performed better, the cor­
relation is 0.517. In future work, we plan to investigate how the MDS representation (or a 
representation like it) might be derived directly from the face images. 
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Besides providing an infonnation-processing account of the human data, there are several 
other avenues for future research. These include empirical testing of our distinctiveness 
predictions, evaluating the applicability of the distinctiveness model in domains other than 
face processing, and evaluating the ability of other modeling paradigms to account for this 
data. 
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