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Abstract 

The learning of many visual perceptual tasks has been shown to be 
specific to practiced stimuli, while new stimuli require re-Iearning 
from scratch. Here we demonstrate generalization using a novel 
paradigm in motion discrimination where learning has been previ­
ously shown to be specific. We trained subjects to discriminate 
the directions of moving dots, and verified the previous results 
that learning does not transfer from the trained direction to a new 
one. However, by tracking the subjects' performance across time 
in the new direction, we found that their rate of learning doubled. 
Therefore, learning generalized in a task previously considered too 
difficult for generalization. We also replicated, in the second ex­
periment, transfer following training with "easy" stimuli. 
The specificity of perceptual learning and the dichotomy between 
learning of "easy" vs. "difficult" tasks were hypothesized to involve 
different learning processes, operating at different visual cortical 
areas. Here we show how to interpret these results in terms of signal 
detection theory. With the assumption of limited computational 
resources, we obtain the observed phenomena - direct transfer 
and change of learning rate - for increasing levels of task 'difficulty. 
It appears that human generalization concurs with the expected 
behavior of a generic discrimination system. 

1 Introduction 

Learning in biological systems is of great importance. But while cognitive learning 
(or "problem solving") is typically abrupt and generalizes to analogous problems, 
perceptual skills appear to be acquired gradually and specifically: Human subjects 
cannot generalize a perceptual discrimination skill to solve similar problems with 
different attributes. For example, in a visual discrimination task (Fig. 1), a subject 
who is trained to discriminate motion directions between 43° and 47° cannot use 
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this skill to discriminate 133° from 137°. Generalization has been found only when 
stimuli of different attributes are interleaved [7 , 10], or when the task is easier [6, 1]. 
For example, a subject who is trained to discriminate 41 ° from 49° can later readily 
discriminate 131° from 139° [6]. The specificity of learning has been so far used to 
support the hypothesis that perceptual learning embodies neuronal modifications 
in the brain's stimulus-specific cortical areas (e.g., visual area MT) [9,3, 2, 5, 8, 4]. 

In contrast to previous results of learning specificity, we show in two experiments in 
Section 2 that learning in motion discrimination generalizes in all cases where speci­
ficity was thought to exist, although the mode of generalization varies . (1) When 
the task is difficult, it is direction specific in the traditional sense; but learning in 
a new direction accelerates. (2) When the task is easy, it generalizes to all direc­
tions after training in only one direction. While (2) is consistent with the findings 
reported in [6 , 1], (1) demonstrate that generalization is the rule, not an exception 
limited only to "easy" stimuli. 

2 Perceptual learning experiments 
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Figure 1: Schematic of one trial. Left: the stimulus was a random dot pattern viewed 
in a circular aperture, spanning 8° of visual angle, moving in a given primary direction 
(denoted dir). The primary direction was chosen from 12 directions, separated by 30°. 
Right: the direction of each of the two stimuli was randomly chosen from two candidate 
directions (dir ± D./2). The subject judged whether the two stimuli moved in the same or 
different directions. Feedback was provided. 

The motion discrimination task is described in Fig. 1. In each trial, the subject 
was presented with two consecutive stimuli, each moving in one of two possible 
directions (randomly chosen from the two directions dir + ~/2 and dir - ~/2). The 
directional difference I~I between the two stimuli was 8° in the easy condition, and 
4° in the difficult condition. The experiment was otherwise identical to that in [2] 
that used I~I = 3°, except that our stimuli were displayed on an SGI computer 
monitor. I~I = 8° was chosen as the easy condition because most subjects found it 
relatively easy to learn, yet still needed substantial training. 

2.1 A difficult task 

We trained subjects extensively in one primary direction with a difficult motion 
discrimination task (~ = 4°), followed by extensive training in a second primary 
direction. The two primary directions were sufficiently different so direct trans­
fer between them was not expected [2] (Fig. 2). Subjects ' initial performance in 
both directions was comparable, replicating the classical result of stimulus specific 
learning (no direct transfer). However, all subjects took only half as many train­
ing sessions to make the same improvement in the second direction. All subjects 
had extensive practice with the task prior to this experiment, thus the acceleration 
cannot be simply explained by familiarity. 



Mechanisms of Generalization in Perceptual Learning 47 

Our results show that although perceptual learning did not directly transfer in this 
difficult task, it did nevertheless generalize to the new direction. The generalization 
was manifested as 100% increase in the rate of learning in the second direction. It 
demonstrates that the generalization of learning, as manifested via direct transfer 
and via increase in learning rate, may be thought of as two extremes of a continuum 
of possibilities. 
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Figure 2: Subjects DJ and ZL needed 20 training sessions in the first direction, and nine in 
the second; subject ZJX needed seven training sessions in the first , and four in the second. 
The rate of learning (the amount of improvement per session) in the second direction is 
significantly greater than in the first (t(2) = 13.41 , p < 0.003) . 

2.2 An easy task 

We first measured the subjects ' baseline performance in an easy task - the dis­
crimination of motion directions 8° apart - in 12 primary directions (64 trials 
each, randomly interleaved). We then trained four subjects in one oblique primary 
direction (chosen randomly and counter-balanced among subjects) for four sessions, 
each with 700 trials. Finally, we measured again the subjects ' performance in all 
directions. Every subject improved in all directions (Fig. 3). The performance of 
seven control subjects was measured without intermediate training; two more con­
trol subjects were added who were "trained" with similar motion stimuli but were 
asked to discriminate a brightness change instead. The control subjects improved 
as well, but significantly less (!ld' = 0.09 vs. 0.78, Fig. 3) . 

Our results clearly show that training with an easy task in one direction leads to 
immediate improvement in other directions. Hence the learned skill generalized 
across motion directions. 

3 A computational model 

We will now adopt a general framework for the analysis of perceptual learning 
results, using the language of signal detection theory. Our model accounts for the 
results in this paper by employing the constraint of limited computational resources. 
The model's assumptions are as follows. 

1. In each trial, each of the two stimuli is represented by a population of measure­
ments that encode all aspects of the stimulus, in particular, the output of localized 
direction detectors. The measurements are encoded as a vector. The decision as to 
whether the two stimuli are the same or not is determined by the difference of the 
two vectors. 

2. Each component of the input measurements is characterized by its sensitivity 
for the discrimination task, e.g., how well the two motion directions can be dis­
criminated apart based on this component. The entire population itself is generally 
divided into two sets: informative - measurements with significant sensitivity, and 



48 Z. Liu and D. Weinshall 

~ 
..... C' _ 

___ __ ~_A~~ _____ ........ 

d' d' 

270 Slt>jects 

Figure 3: Left: Discrimination sensitivity d' of subject JY who was trained in the primary 
direction 3000 • Middle: d' of control subject YHL who had no training in between 
the two measurements. Right: Average d' (and standard error) for all subjects before 
and after training. Trained: results for the four trained subjects. Note the substantial 
improvement between the two measurements. For these subjects, the d' measured after 
training is shown separately for the trained direction (middle column) and the remaining 
directions (right column). Control: results for the nine control subjects. The control 
subjects improved their performance significantly less than the trained subjects (tld' 
0.09 vs. 0.78 ; F(l, 11) = l4.79,p < 0.003). 

uninformative - measurements with null sensitivity. In addition, informative mea­
surements may vary greatly in their individual sensitivity. When many have high 
sensitivity, the task is easy. When most have low sensitivity, the task is difficult. 

We assume that sensitivity changes from one primary direction to the next, but 
the population of informative measurements remains constant. For example, in our 
psychophysical task localized directional signals are likely to be in the informative 
set for any motion direction, though their individual sensitivity will vary based 
on specific motion directions. On the other hand, local speed signals are never 
informative and therefore always belong to the uninformative set. 

3. Due to limited computational capacity, the system can, at a time, only process 
a small number of components of the input vector. The decision in a single trial 
is therefore made based on the magnitude of this sub-vector, which may vary from 
trial to trial. 

In each trial the system rates the processed components of the sub-vector according 
to their sensitivity for the discrimination task. After a sufficient number of trials 
(enough to estimate all the component sensitivities of the sub-vector), the system 
identifies the least sensitive component and replaces it in the next trial with a new 
random component from the input vector. In effect, the system is searching from the 
input vector a sub-vector that gives rise to the maximal discrimination sensitivity. 
Therefore the performance of the system is gradually improving, causing learning 
from session to session in the training direction. 

4. After learning in one training direction, the system identifies the sets of in­
formative and uninformative measurements and include in the informative set any 
measurement with significant (though possibly low) sensitivity. In the next training 
direction, only the set of informative measurements is searched. The search becomes 
more efficient, and hence the acceleration of the learning rate. This accounts for 
the learning between training directions. 

We further assume that each stimulus generates a signal that is a vector of N 
measurements: {Id~l' We also assume that the signal for the discrimination task 
is the difference between two stimulus measurements: x = {Xi}~l' Xi = tlli . The 
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same/different discrimination task is to decide whether x is generated by noise -
the null vector 0, or by some distinct signal - the vector S. 

At time t a measurement vector xt is obtained, which we denote x st if it is the 
signal S, and xnt otherwise. Assume that each measurement in xt is a normal 
random variable' xnt = {xnt}N xnt '" N(O a) x st = {xst}N x st '" N(II . a·) • 1 1= l' 1 , 1 , 1 1 = l' 1 1""" , 1 . 

We measure the sensitivity d' of each component. Since both the signal and noise 
are assumed to be normal random variables, the sensitivity of the i-th measurement 
in the discrimination task is d~ = lJ.lil/ai. Assuming further that the measurements 
are independent of each other and of time, then the combined sensitivity of M 

measurements is d' = JL/:~l (J.ld ai)2. 

3.1 Limited resources: an assumption 

We assume that the system can simultaneously process at most M « N of the 
original N measurements. Since the sensitivity d~ of the different measurements 
varies, the discrimination depends on the combined sensitivity of the particular set 
of M measurements that are being used. Learning in the first training direction, 
therefore, leads to the selection of a "good" subset of the measurements, obtained 
by searching in the measurement space. 

After searching for the best M measurements for the current training direction, the 
system divides the measurements into two sets: those with non-negligible sensitivity, 
and those with practically null sensitivity. This rating is kept for the next training 
direction, when only the first set is searched. 

One prediction of this model is that learning rate should not increase with exposure 
only. In other words, it is necessary for subjects to be exposed to the stimulus 
and do the same discrimination task for effective inter-directional learning to take 
place. For example, assume that the system is given N measurements: N /2 motion 
direction signals and N /2 speed signals. It learns during the first training direction 
that the N /2 speed signals have null sensitivity for the direction discrimination 
task, whereas the directional signals have varying (but significant) sensitivity. In the 
second training direction, the system is given the N measurements whose sensitivity 
profile is different from that in the first training direction, but still with the property 
that only the directional signals have any significant sensitivity (Fig. 4b). Based on 
learning in the first training direction, the system only searches the measurements 
whose sensitivity in the first training direction was significant , namely, the N /2 
directional signals. It ignores the speed signals. Now the asymptotic performance 
in the second direction remains unchanged because the most sensitive measurements 
are within the searched population - they are directional signals. The learning rate, 
however, doubles since the system searches a space half as large. 

3.2 Simulation results 

To account for the different modes of learning, we make the following assumptions. 
When the task is easy, many components have high sensitivity d'. When the task is 
difficult, only a small number of measurements have high d'. Therefore , when the 
task is easy, a subset of M measurements that give rise to the best performance is 
found relatively fast. In the extreme, when the task is very easy (e.g., all the mea­
surements have very high sensitivity), the rate of learning is almost instantaneous 
and the observed outcome appears to be transfer. On the other hand, when the 
task is difficult, it takes a long time to find the M measurements that give rise to 
the best performance, and learning is slow. 
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Figure 4: Hypothetical sensitivity profile for a population of measurements of speed and 
motion direction. Left: First training direction - only the motion direction measure­
ments have significant sensitivity (d' above 0.1), with measurements around 45 0 having 
the highest d'. Right: Second direction - only the motion direction measurements have 
significant sensitivity, with measurements around 1350 having the highest d'. 

The detailed operations of the model are as follows. In the first training direction, 
the system starts with a random set of M measurements. In each trial and using 
feedback, the mean and standard deviation of each measurement is computed: J.L:t, 
ar for the signal and J.Lit, art for the noise. In the next trial, given M measurements 

M ( 1+1 ")2 (x'+1 n')2 { t+l}M th t 1 t J:" Xi -1-£; ! - 1-£; d 1 'fi Xi i=l' e sys em eva ua es u = L..d=l O'l' - O'~t ,an c assl es 
x as the signal if <5 < 0, and noise otherwise. 

At time T, the worst measurement is identified as argval of mini d~, d~ 
21J.Lf - J.LiTI/(ar + art). It is then replaced randomly from one of the remaining 
N - M measurements. The learning and decision making then proceed as above 
for another T iterations. This is repeated until the set of chosen measurements 
stabilizes. At the end, the decision is made based on the set of M measurements 
that have the highest sensitivities. 

(
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Figure 5: Simulated performance (percent correct) as function of time. Left: Difficult 
condition - the number of measurements with high d~ is small (4 out of 150); there is no 
transfer from the first to the second training direction, but the learning rate is increased 
two-fold. This graph is qualitatively similar to the results shown in the top row of Fig. 2. 
Right : Easy condition - the number of measurements with high d~ is large (72 out of 
150); there is almost complete transfer from the first to the secQnd training direction. 

At the very beginning of training in the second direction, based on the measured 
d~ in the first direction, the measurement population is labeled as informative -
those with d~ larger than the median value, and uninformative - the remaining 
measurements. The learning and decision making proceeds as above, while only 
informative measurements are considered during the search. 

In the simulation we used N = 150 measurements, with M = 4. Half of the N 
measurements (the informative measurements) had significant d~. In the second 
training direction, the sensitivities of the measurements were randomly changed, 
but only the informative measurements had significant d~. By varying the number 
of measurements with high di in the population of informative measurements, we 
get the different modes of generalization(Fig. 5). 
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4 Discussions 

In contrast to previous results on the specificity of learning, we broadened the 
search for generalization beyond traditional transfer. We found that generalization 
is the rule, rather than an exception. Perceptual learning of motion discrimination 
generalizes in various forms: as acceleration of learning rate (Exp. 1), as immediate 
improvement in performance (Exp. 2). Thus we show that perceptual learning 
is more similar to cognitive learning than previously thought, with both stimulus 
specificity and generalization as important ingredients. 

In our scheme, the assumption of the computational resource forced the discrimina­
tion system to search in the measurement space. The generalization phenomena -
transfer and increased learning rate - occur due to improvement in search sensitiv­
ity from one training direction to the next, as the size of the search space decreases 
with learning. Our scheme also predicts that learning rate should only improve if 
the subject both sees the stimulus and does the relevant discrimination task, in 
agreement with the results in Exp. 1. Importantly, our scheme does not predict 
transfer per se, but instead a dramatic increase in learning rate that is equivalent 
to transfer. 

Our model is qualitative and does not make any concrete quantitative predictions. 
We would like to emphasize that this is not a handicap of the model. Our goal is to 
show, qualitatively, that the various generalization phenomena should not surprise 
us, as they should naturally occur in a generic discrimination system with limited 
computational resources. Thus we argue that it may be too early to use existing 
perceptual learning results for the identification of the cortical location of perceptual 
learning, and the levels at which modifications are taking place. 
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