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Conditioning experiments probe the ways that animals make pre­
dictions about rewards and punishments and use those predic­
tions to control their behavior. One standard model of condition­
ing paradigms which involve many conditioned stimuli suggests 
that individual predictions should be added together. Various key 
results show that this model fails in some circumstances, and mo­
tivate an alternative model, in which there is attentional selection 
between different available stimuli. The new model is a form of 
mixture of experts, has a close relationship with some other exist­
ing psychological suggestions, and is statistically well-founded. 

1 Introduction 

Classical and instrumental conditioning experiments study the way that animals 
learn about the causal texture of the world (Dickinson, 1980) and use this informa­
tion to their advantage. Although it reached a high level of behavioral sophistica­
tion, conditioning has long since gone out of fashion as a paradigm for studying 
learning in animals, partly because of the philosophical stance of many practition­
ers, that the neurobiological implementation of learning is essentially irrelevant. 
However, more recently it has become possible to study how conditioning phe­
nomena are affected by particular lesions or pharmacological treatments to the 
brain (eg Gallagher & Holland, 1994), and how particular systems, during simple 
learning tasks, report information that is consistent with models of conditioning 
(Gluck & Thompson, 1987; Gabriel & Moore, 1989). 

In particular, we have studied the involvement of the dopamine (DA) system in 
the ventral tegmental area of vertebrates in reward based learning (Montague et 
aI, 1996; Schultz et aI, 1997). The activity of these cells is consistent with a model 
in which they report a temporal difference (TO) based prediction error for reward 
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(Sutton & Barto, 1981; 1989). This prediction error signal can be used to learn correct 
predictions and also to learn appropriate actions (Barto, Sutton & Anderson, 1983). 
The DA system is important since it is crucially involved in normal reward learning, 
and also in the effects of drugs of addiction, self stimulation, and various neural 
diseases. 

The TO model is consistent with a whole body of experiments, and has even cor­
rectly anticipated new experimental findings. However, like the Rescorla-Wagner 
(RW; 1972) or delta rule, it embodies a particular additive model for the net pre­
diction made when there are multiple stimuli. Various sophisticated conditioning 
experiments have challenged this model and found it wanting. The results support 
competitive rather than additive models. Although ad hoc suggestions have been 
made to repair the model, none has a sound basis in appropriate prediction. There 
is a well established statistical theory for competitive models, and it is this that we 
adopt. 

In this paper we review existing evidence and theories, show what constraints 
a new theory must satisfy, and suggest and demonstrate a credible candidate. 
Although it is based on behavioral data, it also has direct implications for our 
neural theory. 

2 Data and Existing Models 

Table 1 describes some of the key paradigms in conditioning (Dickinson, 1980; 
Mackintosh, 1983). Although the collection of experiments may seem rather arcane 
(the standard notation is even more so), in fact it shows exactly the basis behind 
the key capacity of animals in the world to predict events of consequence. We will 
extract further biological constraints implied by these and other experiments in the 
discussion. 

In the table,l (light) and s (tone) are potential predictors (called conditioned stimuli or 
CSs), of a consequence, r, such a~ the delivery of a reward (called an unconditioned 
stimulus or US). Even though we use TO rules in practice, we discuss some of the 
abstract learning rules without much reference to the detailed time course of trials. 
The same considerations apply to TD. 

In Pavlovian conditioning, the light acquires a positive association with the reward 
in a way that can be reasonably well modeled by: 

,6.Wl(t) = al(t)(r(t) - wl(t»l(t), (1) 

where let) E {O, I} represents the presence of the light in trial t (s(t) will similarly 
represent the presence of a tone), Wl(t) (we will often drop the index t) represents 
the strength of the expectation about the delivery of reward ret) in trial t if the 
light is also delivered, and al(t) is the learning rate. This is just the delta rule. It 
also captures well the probabilistic contingent nature of conditioning - for binary 
ret) E {O, I}, animals seem to assess il = P[r(t)ll(t) = 1J - P[r(t)ll(t) = OJ, and then 
only expect reward following the light (in the model, have WI > 0) if il > O. 

Pavlovian conditioning is easy to explain under a whole wealth of rules. The trouble 
comes in extending equation 1 to the case of multiple predictors (in this paper we 
consider just two). The other paradigms in table 1 probe different aspects of this. 
The one that is most puzzling is (perversely) called downwards unblocking (Holland, 
1988). In a first set of trials, an association is established between the light and two 
presentations of reward separated by a few (u) seconds. In a second set, a tone is 
included with the light, but the second reward is dropped. The animal amasses 
less reward in conjunction with the tone. However, when presented with the tone 
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Name Set 1 Set 2 Test 
1 Pavlovian I -t r l~ r 

2 Overshadowing l+s-tr { I ~ r~ } 1 
s~ r'i 

3 Inhibitory { l-tr } 
Z+s-t· 

s~f 

4 Blocking l-tr l+s-tr s~· 

5 Upwards unblocking l-tr 1+ s -t rflur s~r 

.6 Downwards unblockinK I -t rflur l+s-tr s~ ±~ 

Table 1: Paradigms. Sets 1 and 2 are separate sets of learning trials, which are continued 
until convergence. Symbols land s indicate presentation of lights and tones as potential 
predictors. The 't+ in the test set indicates that the associations of the predictors are tested, 
prodUCing the listed results. In overshadowing, association with the reward can be divided 
between the light and the sound, indicated by r!. In some cases overshadowing favours 
one stimulus at the complete expense of the other; and at the end of very prolonged training, 
all effects of overshadowing can disappear. In blocking, the tone makes no prediction of r. 
In set 2 of inhibitory conditioning, the two types of trials are interleaved and the outcome 
is that the tone predicts the absence of reward. In upwards and downwards unblocking, 
the 6" indicates that the delivery of two rewards is separated by time u. For downwards 
unblocking, if u is small, then s is associated with the absence of r; if u is large, then s is 
associated with the presence of r. 

alone, the animal expects the presence rather than the absence of reward. On the face 
of it, this seems an insurmountable challenge to prediction-based theories. First 
we describe the existing theories, then we formalise some potential replacements. 

One theory (called a US-processing theory) is due to Rescorla & Wagner (RW; 1972), 
and, as pointed out by Sutton & Barto (1981), is just the delta rule. For RW, the 
animal constructs a net prediction: 

V(t) = wi(t)l(t) + ws{t)s{t) (2) 

for r(t), and then changes flWi(t) = Cti(t)(r(t) - V(t»l(t) (and similarly for ws(t» 
using the prediction error r(t) - V(t). Its foundation in the delta rule makes it 
computationally appropriate (Marr, 1982) as a method of making predictions. TD 
uses the same additive model in equation 2, but uses r(t) + V(t + 1) - V(t) as the 
prediction error. 

RW explains overshadowing, inhibitory conditioning, blocking, and upwards un­
blocking, but not downwards unblocking. In overshadowing, the terminal asso­
ciation between I and r is weaker if I and s are simultaneously trained - this is 
expected under RW since learning stops when V(t) = r{t), and W, and Ws will 
share the prediction. In inhibitory conditioning, the sound comes to predict the ab­
sence of r. The explanation of inhibitory conditioning is actually quite complicated 
(Konorski, 1967; Mackintosh, 1983); however RW provides the simple account that 
WI = r for the I -t r trials, forcing Ws = -r for the 1+ s -t . trials. In blocking, 
the prior association between I and r means that Wi = r in the second set of trials, 
leading to no learning for the tone (since V(t) - r(t) = 0). In upwards unblocking, 
Wi = r at the start of set 2. Therefore, r(t) - WI = r > 0, allowing Ws to share in the 
prediction. 

As described above, downwards unblocking is the key thorn in the side of RW. 
Since the TD rule combines the predictions from different stimuli in a similar way, 
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it also fails to account properly for downwards unblocking. This is one reason why 
it is incorrect as a model of reward learning. 

The class of theories (called CS-processing theories) that is alternative to RW does 
not construct a net prediction V(t), but instead uses equation 1 for all the stimuli, 
only changing the learning rates O!l(t) and O!s(t) as a function of the conditioning 
history of the stimuli (eg Mackintosh, 1975; Pearce & Hall, 1980; Grossberg, 1982). 
A standard notion is that there is a competition between different stimuli for a 
limited capacity learning processor (Broadbent, 1958; Mackintosh, 1975; Pearce & 
Hall, 1980), translating into competition between the learning rates. In blocking, 
nothing unexpected happens in the second set of trials and equally, the tone does 
not predict anything novel. In either case as is set to '" 0 and so no learning 
happens. In these models, downwards unblocking now makes qualitative sense: 
the surprising consequences in set 2 can be enough to set as »0, but then learning 
according to equation 1 can make Ws > O. Whereas Mackintosh's (1975) and Pearce 
and Hall's (1980) models only consider competition between the stimuli for learning, 
Grossberg's (1982) model incorporates competition during representation, so the net 
prediction on a trial is affected by competitive interactions between the stimuli. In 
essence, our model provides a statistical formalisation of this insight. 

3 New Models 

From the previous section, it would seem that we have to abandon the computa­
tional basis of the RW and TD models in terms of making collective predictions 
about the reward. The CS-processing models do not construct a net prediction of 
the reward, or say anything about how possibly conflicting information based on 
different stimuli should be integrated. This is a key flaw - doing anything other 
than well-founded prediction is likely to be maladaptive. Even quite successful 
pre-synaptic models, such as Grossberg (1982), do not justify their predictions. 

We now show that we can take a different, but still statistically-minded ap­
proach to combination in which we specify a parameterised probability distri­
bution P[r(t)ls(t), l(t)] and perform a form of maximum likelihood (ML) inference, 
updating the parameters to maximise this probability over the samples. Consider 
three natural models of P[r(t)/s(t), l(t)]: 

Pa[r(t)ls(t),l(t)] N[w1l(t) + wss(t), (72] (3) 

P M[r(t)/s(t), l(t)] 

P J[r(t)/s(t), l(t)] 

7l"1 (t)N[Wl' (72] + 7l"s(t)N[ws, (72] + 1i'(t).,v[w, r2] (4) 

N[WI7l"I(t)l(t) + wsnAt)s(t), (72] (5) 

where N[J.L, (72] is a normal distribution, with mean J.L and variance (72. In the latter 
two cases, 0 ::; 7l"1 (t) + 7l" s (t) ::; I, implementing a form of competition between 
the stimuli, and 7l".(t) = 0 if stimulus * is not presented. In equation 4, N[w, r2] 
captures the background expectation if neither the light nor the tone wins, and 
1i'(t) = 1 - 7l"1(t) - n"s{t). We will show that the data argue against the first two and 
support the third of these models. 

Rescorla-Wagner: Pa[r(t)/s(t), l(t)] 

The RW rule is derived as ML inference based on equation 3. The only difference 
is the presence of the variance, (72. This is useful for capturing the partial rein­
forcement effect (see Mackintosh, 1983), in which if r(t) is corrupted by substantial 
noise (ie (72 »0), then learning to r is demonstrably slower. As we discussed above, 
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downwards unblocking suggests that animals are not using P G [r( t) Is( t), I (t)] as the 
basis for their predictions. 

Competitive mixture of experts: P M[r(t)ls(t), l(t)] 

PM[r(t)ls(t),l(t)] is recognisable as the generative distribution in a mixture 
of Gaussians model (Nowlan, 1991; Jacobs et ai, 1991b). Key in this model 
are the mixing proportions 7r1(t) and 7rs(t). Online variants of the E phase of 
the EM algorithm (Dempster et ai, 1977) compute posterior responsibilities as 
ql(t) + qs(t) + q(t) = 1, where ql(t) <X 7r1(t)e-(r(t)-w1I(t)),2/2(T2 (and similarly for the 
others), and then perform a partial M phase as 

L\wl(t) <X (r(t) - WI (t»ql(t) L\ws(t) <X (r(t) - ws(t»qs(t) (6) 
which has just the same character as the presynaptic rules (depending on how 7r1 (t) 
is calculated). As in the mixture of experts model, each expert (each stimulus here) 
that seeks to predict r(t) (ie each stimulus * for which q. (t) f; 0) has to predict 
the whole of r(t) by itself. This means that the model can capture downwards 
unblocking in the following way. The absence of the second r in the second set of 
trials forces 7r s (t) > 0, and, through equation 6, this in turn means that the tone will 
come to predict the presence of the first r. The time u between the rewards can be 
important because of temporal discounting. This means that there are sufficiently 
large values of u for which the inhibitory effect of the absence of the second reward 
will be dominated. Note also that the expected reward based on l(t) and s(t) is the 
sum 

(7) 

Although the net prediction given in equation 7 is indeed based on all the stimuli, 
it does not directly affect the course of learning. This means that the model has 
difficulty with inhibitory conditioning. The trouble with inhibitory conditioning is 
that the model cannot use Ws < 0 to counterbalance WI > 0 - it can at best set Ws = 0, 
which is experimentally inaccurate. Note, however, this form of competition bears 
some interesting similarities with comparator models of conditioning (see Miller & 
Matzel, 1989). It also has some problems in explaining overshadowing, for similar 
reasons. 

Cooperative mixture of experts: P J[r(t)ls(t), l(t)] 

The final model P J[r(t)ls(t), l(t)] is just like the mixture model that Jacobs et al 
(1991a) suggested (see also Bordley, 1982). One statistical formulation of this model 
considers that, independently, 

where Pl(t) and Ps(t) are inverse variances. This makes 

(72 = (Pl(t) + Ps(t»-l 7r1(t) = PI(t)(72 7rs(t) = Ps(t)(72. 

Normative learning rules should emerge from a statistical model of uncertainty in 
the world. Short of such a model, we used: 

7r1 (t) 
L\WI = o:w-(-) 6(t) 

PI t 

where 6(t) = r(t) - 7r1(t)Wl (t) - 7rs (t)ws (t) is the prediction error; the 1/ Pl(t) term 
in changing WI makes learning slower if WI is more certainly related to r (ie if PI (t) is 
greater); the 0.1 substitutes for background noise; if 62 (t) is too large, then PI + Ps 
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Figure 1: Blocking and downwards unblocking with 5 steps to the first reward; and a 
variable number to the second. Here, the discount factor "y = 0.9, and O:w = 0.5, O:p = 0.02, 
f.L = 0.75. For blocking, the second reward remains; for unblocking it is removed after 500 
trials. a) The terminal weight for the sound after learning - for blocking it is always small 
and positive; for downwards unblocking, it changes from negative at small ~u to positive 
at large ~u. b,c) Predictive variances Pl(t) and P .. (t). In blocking, although there is a small 
change when the sound is introduced because of additivity of the variances, learning to the 
sound is substantially prevented. In downwards unblocking, the surprise omission of the 
second reward makes the sound associable and unblocks learning to it. 

is shared out in proportion of pr to capture the insight that there can be dramatic 
changes to variabilities; and the variabilities are bottom-limited. 

Figure 1 shows the end point and course of learning in blocking and downwards 
unblocking. Figure 1a confirms that the model captures downwards unblocking, 
making the terminal value of Ws negative for short separations between the re­
wards and positive for long separations. By comparison, in the blocking condition, 
for which both rewards are always presented, W s is always small and positive. 
Figures 1b,c show the basis behind this behaviour in terms of Pl(t) and Ps{t). In 
particular, the heightened associability of the sound in unblocking following the 
prediction error when the second reward is removed accounts for the behavior. 

As for the mixture of experts model (and also for comparator models), the presence 
of 11'j(t) and nAt) makes the explanation of inhibitory conditioning and overshad­
owing a little complicated. For instance, if the sound is associable (Ps(t) » 0), then 
it can seem to act as a conditioned inhibitor even if Ws = O. Nevertheless, unlike 
the mixture of experts model, the fact that learning is based on the joint prediction 
makes true inhibitory conditioning possible. 

4 Discussion 

Downwards unblocking may seem like an extremely abstruse paradigm with which 
to refute an otherwise successful and computationally sound model. However, it 
is just the tip of a conditioning iceberg that would otherwise sink TD. Even in 
other reinforcement learning applications of TO, there is no a priori reason why 
predictions should be made according to equation 2 - the other statistical models 
in equations 4 and 5 could also be used. Indeed, it is easy to generate circumstances 
in which these more competitive models will perform better. For the neurobiology, 
experiments on the behavior of the DA system in these conditioning tasks will help 
specify the models further. 

The model is incomplete in various important ways. First, it makes no distinction 
between preparatory and consumatory conditioning (Konorski, 1967). There is 
evidence that the predictions a CS makes about the affective value of USs fall in 
a different class from the predictions it makes about the actual USs that appear. 
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For instance, an inhibitory stimulus reporting the absence of expected delivery of 
food can block learning to the delivery of shock, implying that aversive events 
form a single class. The affective value forms the preparatory aspect, is likely 
what is reported by the DA cells, and perhaps controls orienting behavior, the 
characteristic reaction of animals to the conditioned stimuli that may provide an 
experimental handle on the attention they are paid. Second, the model does not 
use opponency (Konorski, 1967; Solomon & Corbit, 1974; Grossberg, 1982) to 
handle inhibitory conditioning. This is particularly important, since the dynamics 
of the interaction between the opponent systems may well be responsible for the 
importance of the delay u in downwards unblocking. Serotonin is an obvious 
candidate as an opponent system to DA (Montague et a11996). We also have not 
specified a substrate for the associabilities or the attentional competition - the DA 
system itself may well be involved. Finally, we have not specified an overall model 
of how the animal might expect the contingency of the world to change over time 
- which is key to the statistical justification of appropriate learning rules. 
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