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Abstract 

Hidden Markov models (HMMs) for automatic speech recognition 
rely on high dimensional feature vectors to summarize the short­
time properties of speech. Correlations between features can arise 
when the speech signal is non-stationary or corrupted by noise. We 
investigate how to model these correlations using factor analysis, 
a statistical method for dimensionality reduction . Factor analysis 
uses a small number of parameters to model the covariance struc­
ture of high dimensional data. These parameters are estimated 
by an Expectation-Maximization (EM) algorithm that can be em­
bedded in the training procedures for HMMs. We evaluate the 
combined use of mixture densities and factor analysis in HMMs 
that recognize alphanumeric strings. Holding the total number of 
parameters fixed, we find that these methods, properly combined, 
yield better models than either method on its own. 

1 Introduction 

Hidden Markov models (HMMs) for automatic speech recognition[l] rely on high 
dimensional feature vectors to summarize the short-time, acoustic properties of 
speech. Though front-ends vary from recognizer to recognizer, the spectral infor­
mation in each frame of speech is typically codified in a feature vector with thirty 
or more dimensions . In most systems, these vectors are conditionally modeled by 
mixtures of Gaussian probability density functions (PDFs). In this case, the corre­
lations between different features are represented in two ways[2]: implicitly by the 
use of two or more mixture components, and explicitly by the non-diagonal elements 
in each covariance matrix. Naturally, these strategies for modeling correlations­
implicit versus explicit-involve tradeoffs in accuracy, speed, and memory. This 
paper examines these tradeoffs using the statistical method of factor analysis. 
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The present work is motivated by the following observation. Currently, most HMM­
based recognizers do not include any explicit modeling of correlations; that is to 
say-conditioned on the hidden states, acoustic features are modeled by mixtures of 
Gaussian PDFs with diagonal covariance matrices. The reasons for this practice are 
well known. The use offull covariance matrices imposes a heavy computational bur­
den, making it difficult to achieve real-time recognition. Moreover, one rarely has 
enough data to (reliably) estimate full covariance matrices. Some of these disadvan­
tages can be overcome by parameter-tying[3]-e.g., sharing the covariance matrices 
across different states or models. But parameter-tying has its own drawbacks: it 
considerably complicates the training procedure, and it requires some artistry to 
know which states should and should not be tied. 

Unconstrained and diagonal covariance matrices clearly represent two extreme 
choices for the hidden Markov modeling of speech. The statistical method of factor 
analysis[4,5] represents a compromise between these two extremes. The idea behind 
factor analysis is to map systematic variations of the data into a lower dimensional 
subspace. This enables one to represent, in a very compact way, the covariance ma­
trices for high dimensional data. These matrices are expressed in terms of a small 
number of parameters that model the most significant correlations without incur­
ring much overhead in time or memory. Maximum likelihood estimates of these 
parameters are obtained by an Expectation-Maximization (EM) algorithm that can 
be embedded in the training procedures for HMMs. 

In this paper we investigate the use of factor analysis in continuous density HMMs. 
Applying factor analysis at the state and mixture component level[6, 7] results in 
a powerful form of dimensionality reduction, one tailored to the local properties 
of speech. Briefly, the organization of this paper is as follows. In section 2, we 
review the method of factor analysis and describe what makes it attractive for large 
problems in speech recognition. In section 3, we report experiments on the speaker­
independent recognition of connected alpha-digits. Finally, in section 4, we present 
our conclusions as well as ideas for future research. 

2 Factor analysis 

Factor analysis is a linear method for dimensionality reduction of Gaussian random 
variables[4, 5]. Many forms of dimensionality reduction (including those imple­
mented as neural networks) can be understood as variants of factor analysis. There 
are particularly close ties to methods based on principal components analysis (PCA) 
and the notion of tangent distance[8]. The combined use of mixture densities and 
factor analysis-resulting in a non-linear form of dimensionality reduction-was 
first applied by Hinton et al[6] to the modeling of handwritten digits. The EM 
procedure for mixtures of factor analyzers was subsequently derived by Ghahra­
mani et al[7]. Below we describe the method offactor analysis for Gaussian random 
variables, then show how it can be applied to the hidden Markov modeling of speech. 

2.1 Gaussian model 

Let x E nP denote a high dimensional Gaussian random variable. For simplicity, 
we will assume that x has zero mean. If the number of dimensions, D, is very 
large, it may be prohibitively expensive to estimate, store, multiply, or invert a full 
covariance matrix. The idea behind factor analysis is to find a subspace of much 
lower dimension, f « D, that captures most of the variations in x. To this end, let 
z E 'RJ denote a low dimensional Gaussian random variable with zero mean and 
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identity covariance matrix: 

(1) 

We now imagine that the variable x is generated by a random process in which z is a 
latent (or hidden) variable; the elements of z are known as the factors. Let A denote 
an arbitrary D x f matrix, and let '11 denote a diagonal, positive-definite D x D 
matrix. We imagine that x is generated by sampling z from eq. (1), computing the 
D-dime.nsional vector Az, then adding independent Gaussian noise (with variances 
Wii) to each component of this vector. The matrix A is known as the factor loading 
matrix. The relation between x and z is captured by the conditional distribution: 

P(xlz) = 1'111- 1/ 2 e- HX-AZ)TI)-l(X-AZ) 
(211")D/2 

(2) 

The marginal distribution for x is found by integrating out the hidden variable z. 
The calculation is straightforward because both P(z) and P(xlz) are Gaussian: 

P(x) = J dz P(xlz)P(z) (3) 

I'll + AAT I- 1/ 2 -!XT(I)+AATf1x 
(211")D/2 e (4) 

From eq. (4), we see that x is normally distributed with mean zero and covariance 
matrix '11 + AAT . It follows that when the diagonal elements ofw are small, most 
of the variation in x occurs in the subspace spanned by the columns of A. The 
variances Wii measure the typical size of componentwise ftuctations outside this 
subspace. 

Covariance matrices of the form '11 + AAT have a number of useful properties. Most 
importantly, they are expressed in terms of a small number of parameters, namely 
the D(f + 1) non-zero elements of A and W. If f ~ D, then storing A and '11 requires 
much less memory than storing a full covariance matrix. Likewise, estimating A and 
'11 also requires much less data than estimating a full covariance matrix. Covariance 
matrices of this form can be efficiently inverted using the matrix inversion lemma[9], 

(5) 

where I is the f x f identity matrix. This decomposition also allows one to com­
pute the probability P(x) with only O(fD) multiplies, as opposed to the O(D2) 
multiplies that are normally required when the covariance matrix is non-diagonal. 

Maximum likelihood estimates of the parameters A and '11 are obtained by an EM 
procedure[4]. Let {xt} denote a sample of data points (with mean zero). The EM 
procedure is an iterative procedure for maximizing the log-likelihood, Lt In P(xt}, 
with P(Xt) given by eq. (4). The E-step of this procedure is to compute: 

Q(A', '11'; A, '11) = 'LJdz P(zIXt,A, w)lnP(z,xtIA', '11'). (6) 
t 

The right hand side of eq. (6) depends on A and '11 through the statistics[7]: 

E[zlxtl [I + AT w- 1 A]-lATw-1Xt, (7) 

E[zzT lx tl = [I + AT W- 1 A]-l + E[zlxtlE[zTlxtl. (8) 

Here, E['lxtl denotes an average with respect to the posterior distribution, 
P(zlxt, A, '11). The M-step of the EM algorithm is to maximize the right hand 
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side of eq. (6) with respect to'll' and A'. This leads to the iterative updates[7]: 

A' (~X'E[ZT IX,]) (~E[zzTIX,]) -1 (9) 

'11' diag { ~ ~ [x,x; - A'E[zlx,]xiJ }, (10) 

where N is the number of data points, and'll' is constrained to be purely diago­
nal. These updates are guaranteed to converge monotonically to a (possibly local) 
maximum of the log-likelihood. 

2.2 Hidden Markov modeling of speech 

Consider a continuous density HMM whose feature vectors, conditioned on the 
hidden states, are modeled by mixtures of Gaussian PDFs. If the dimensionality of 
the feature space is very large, we can make use of the parameterization in eq. (4). 
Each mixture component thus obtains its own means, variances, and factor loading 
matrix. Taken together , these amount to a total of C(f + 2)D parameters per 
mixture model, where C is the number of mixture components, f the number of 
factors, and D the dimensionality of the feature space. Note that these models 
capture feature correlations in two ways: implicitly, by using two or more mixture 
components, and explicitly, by using one or more factors. Intuitively, one expects 
the mixture components to model discrete types of variability (e.g., whether the 
speaker is male or female), and the factors to model continuous types of variability 
(e.g., due to coarticulation or noise). Both types of variability are important for 
building accurate models of speech. 

It is straightforward to integrate the EM algorithm for factor analysis into the 
training of HMMs. Suppose that S = {xtl represents a sequence of acoustic vectors. 
The forward-backward procedure enables one to compute the posterior probability, 
,tC = P(St = s, Ct = ciS), that the HMM used state s and mixture component cat 
time t. The updates for the matrices A $C and w3C (within each state and mixture 
component) have essentially the same form as eqs. (9-10), except that now each 
observation Xt is weighted by the posterior probability, ,tc . Additionally, one must 
take into account that the mixture components have non-zero means[7]. A complete 
derivation of these updates (along with many additional details) will be given in a 
longer version of this paper. 

Clearly, an important consideration when applying factor analysis to speech is 
the choice of acoustic features. A standard choice--and the one we use in our 
experiments-is a thirty-nine dimensional feature vector that consists of twelve cep­
stral coefficients (with first and second derivatives) and the normalized log-energy 
(with first and second derivatives). There are known to be correlations[2] between 
these features, especially between the different types of coefficients (e.g., cepstrum 
and delta-cepstrum). While these correlations have motivated our use of factor 
analysis, it is worth emphasizing that the method applies to arbitrary feature vec­
tors. Indeed, whatever features are used to summarize the short-time properties 
of speech, one expects correlations to arise from coarticulation, background noise, 
speaker idiosynchrasies, etc. 

3 Experiments 

Continuous density HMMs with diagonal and factored covariance matrices were 
trained to recognize alphanumeric strings (e .g., N Z 3 V J 4 E 3 U 2). Highly 
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Figure 1: Plots of log-likelihood scores and word error rates on the test set versus 
the number of parameters per mixture model (divided by the number of features). 
The stars indicate models with diagonal covariance matrices; the circles indicate 
models with factor analysis. The dashed lines connect the recognizers in table 2. 

confusable letters such as BjV , C jZ, and MjN make this a challenging problem 
in speech recognition . The training and test data were recorded over a telephone 
network and consisted of 14622 and 7255 utterances, respectively. Recognizers 
were built from 285 left-to-right HMMs trained by maximum likelihood estimation; 
each HMM modeled a context-dependent sub-word unit. Testing was done with a 
free grammar network (i .e., no grammar constraints). We ran several experiments, 
varying both the number of mixture components and the number of factors. The 
goal was to determine the best model of acoustic feature correlations. 

Table 1 summarizes the results of these experiments. The columns from left to 
right show the number of mixture components , the number of factors, the number 
of parameters per mixture model (divided by the feature dimension), the word error 
rates (including insertion , deletion, and substition errors) on the test set , the average 
log-likelihood per frame of speech on the test set , and the CPU time to recognize 
twenty test utterances (on an SGI R4000). Not surprisingly, the word accuracies 
and likelihood scores increase with the number of modeling parameters; likewise, 
so do the CPU times. The most interesting comparisons are between models with 
the same number of parameters-e.g., four mixture components with no factors 
versus two mixture components with two factors. The left graph in figure 1 shows 
a plot of the average log-likelihood versus the number of parameters per mixture 
model; the stars and circles in this plot indicate models with and without diagonal 
covariance matrices. One sees quite clearly from this plot that given a fixed number 
of parameters , models with non-diagonal (factored) covariance matrices tend to 
have higher likelihoods. The right graph in figure 1 shows a similar plot of the word 
error rates versus the number of parameters. Here one does not see much difference; 
presumably, because HMMs are such poor models of speech to begin with , higher 
likelihoods do not necessarily translate into lower error rates. We will return to this 
point later . 

It is worth noting that the above experiments used a fixed number of factors per 
mixture component . In fact , because the variability of speech is highly context­
dependent, it makes sense to vary the number of factors , even across states within 
the same HMM. A simple heuristic is to adjust the number of factors depending on 
the amount of training data for each state (as determined by an initial segmentation 
of the training utterances). We found that this heuristic led to more pronounced 
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C f C(f + 2) word error (%) log-likelihood CPU time (sec) 
1 0 2 16.2 32.9 25 
1 1 3 14.6 34.2 30 
1 2 4 13.7 34 .9 30 
1 3 5 13.0 35.3 38 
1 4 6 12.5 35.8 39 
2 0 4 13 .4 34 .0 30 
2 1 6 12.0 35.1 44 
2 2 8 11.4 35.8 48 
2 3 10 10.9 36.2 61 
2 4 12 10.8 36.6 67 
4 0 8 11.5 34.9 46 
4 1 12 10.4 35.9 80 
4 2 16 10.1 36.5 93 
4 3 20 10.0 36.9 132 
4 4 24 9.8 37.3 153 
8 0 16 10.2 35 .6 93 
8 1 24 9.7 36.5 179 
8 2 32 9.6 37.0 226 
16 0 32 9.5 36.2 222 

Table 1: Results for different recogmzers. The columns indicate the number of 
mixture components , the number of factors , the number of parameters per mixture 
model (divided by the number of features), the word error rates and average log­
likelihood scores on the test set, and the CPU time to recognize twenty utterances. 

C f C(f + 2) word error J % J log-likelihood CPU time Jse<J 
1 2 4 12.3 35.4 32 
2 2 8 10.5 36.3 53 
4 2 16 9.6 37 .0 108 

Table 2: Results for recognizers with variable numbers of factors ; f denotes the 
average number of factors per mixture component. 

differences in likelihood scores and error rates . In particular, substantial improve­
ments were observed for three recognizers whose HMMs employed an average of 
two factors per mixture component; see the dashed lines in figure 1. Table 2 sum­
marizes these results. The reader will notice that these recognizers are extremely 
competitive in all aspects of performance--accuracy, memory, and speed-with the 
baseline (zero factor) models in table 1. 

4 Discussion 

In this paper we have studied the combined use of mixture densities and factor 
analysis for speech recognition . This was done in the framework of hidden Markov 
modeling, where acoustic features are conditionally modeled by mixtures of Gaus­
sian PDFs. We have shown that mixture densities and factor analysis are comple­
mentary means of modeling acoustic correlations. Moreover , when used together , 
they can lead to smaller, faster, and more accurate recognizers than either method 
on its own . (Compare the last lines of tables 1 and 2.) 
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Several issues deserve further investigation. First, we have seen that increases in 
likelihood scores do not always correspond to reductions in error rates. (This is 
a common occurrence in automatic speech recognition.) We are currently investi­
gating discriminative methods[lO] for training HMMs with factor analysis; the idea 
here is to optimize an objective function that more directly relates to the goal of 
minimizing classification errors. Second, it is important to extend our results to 
large vocabulary tasks in speech recognition. The extreme sparseness of data in 
these tasks makes factor analysis an appealing strategy for dimensionality reduc­
tion. Finally, there are other questions that need to be answered. Given a limited 
number of parameters, what is the best way to allocate them among factors and 
mixture components? Do the cepstral features used by HMMs throwaway informa­
tive correlations in the speech signal? Could such correlations be better modeled by 
factor analysis? Answers to these questions can only lead to further improvements 
in overall performance. 
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